簡易檢索 / 詳目顯示

研究生: 梁瑜庭
Liang, Yu-Ting
論文名稱: 公共電動機車共享系統之最佳車輛佈署策略研究
A Study on the Optimal Vehicle Deployment for Public Electric Scooter Sharing Systems
指導教授: 王逸琳
Wang, I-Lin
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業與資訊管理學系
Department of Industrial and Information Management
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 83
中文關鍵詞: 電動機車載具共享充電站電池交換站混整數規劃車輛佈署策略粒子群最佳化演算法
外文關鍵詞: Electric scooter, Vehicle sharing, Charging station, Battery exchange station, Mixed integer programming, Vehicle deployment strategy, Particle swarm optimization
相關次數: 點閱:129下載:23
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 節能減碳的議題在近年來漸漸受到重視,為了減少溫室氣體的排放,以綠色運輸來解決環境汙染及交通壅塞的概念因應而生,其中又以電力驅動的汽機車及近年來風行的公共自行車共享系統最受矚目。由於都會區交通擁擠且停車空間有限,單人開車浪費空間,多人共駕不夠方便且有安全疑慮,共享自行車不夠便捷又常因天候地形不佳而影響其使用率;反之,機車不但節省空間又便捷舒適,我們預期電動機車將會取代傳統燃油機車,成為通勤族使用捷運、公車等大眾運輸系統的最初及最後一哩路程之銜接工具,甚至可成為中短程通勤之代步工具。有鑑於此,本研究欲結合「電動機車」與「載具共享」兩大綠色運輸的概念,探討都會區中針對通勤需求而設計的公共電動機車共享系統之期初車輛佈署策略。
    由於電動機車之續航力對共享系統之方便性影響甚鉅,本研究首度將「充電站」及「電池交換站」等兩類延長電池續航力之技術與設施納入共享系統的規劃考量,提出兩個線性混整數規劃模式來預估各租借站期初應擺放的車數,以滿足一定程度的租借需求,達到預設的服務水準。為使我們提出之數學規劃模式能更貼近現實及正確地反應使用者的租借行為與趨勢,讓更多租借需求的騎乘路線能有更多的電動機車租借流量,我們將電池充耗電速率列入考慮,並以不同起訖需求之相對比例關係來分配電動機車租借流量。
    本研究利用最佳化軟體Gurobi求解混整數規劃模式,發現隨著模式規模擴大會增加求解時間,同時亦觀察到降低服務水準要求的模式求解更加耗時,因此本研究進一步發展兩個粒子群最佳化演算法PSOCP與PSOBE分別用以加速求解使用充電站與使用電池交換站的數學模式,並探討在不同情境下的期初車輛佈署策略,分析比較不同的電池續航力延伸技術以及不同的耗電與充電速率對服務水準與成本的影響,期望研究結果能作為未來相關政府部門及營運者之決策參考。

    Green transportation has aroused more and more attentions recently, especially by the introduction to the concept of vehicle sharing that promotes shared vehicles to conserve energy, reduce carbon emissions, and improve traffic congestions. The bicycle sharing system has become the most poplar vehicle sharing systems so far. However, for some places with bad weather or topography not so convenient for biking, electric scooters (e-scooters) may serve better than bicycles as shared vehicles, since they are as mobile as bicycles, and can move even faster with ease.
    This thesis focuses on the initial vehicle deployment at each rental site for a public e-scooter sharing system so that service requirement can be achieved with minimum total cost. In particular, we would like to put optimal number of e-scooters at each rental site in the beginning of each day so that the number of satisfied Origin-Destination demands attains specified service level requirement with minimum number of e-scooters. Two linear mixed integer programming models are proposed based on different ways of recharging batteries: one using the charging stations, and the other using the battery exchange stations. Both models assume uncapacitated rental sites, and available e-scooters are distributed fairly in proportion to their historical OD profile. They differ in how the battery power level changes, where an idle e-scooter recharged in a charging station model gains some battery power within a time period, whereas an idle e-scooter in a battery exchange station model does not gain any battery power, unless the power level is insufficient for one time period in which case the battery will be directly swapped to one with full power level.
    We first solve these models by the Gurobi optimizer, and learned that models asking for lower service level requirements take longer time. We then design two particle swarm optimization algorithms, named PSOCP and PSOBE, respectively for eeach model. These proposed PSO algorithms can calculate good solutions in much shorter time than Gurobi. Finally, we conduct analyses on the effects in the service level requirements and total costs caused by different battery recharging models, as well as the effects caused by different battery consumption and recharging rates.

    摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VI 圖目錄 VIII 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 4 1.3 研究問題與範圍 4 1.4 論文架構 6 第二章 文獻探討 7 2.1 電動機車相關文獻 7 2.1.1 電動機車之簡介 7 2.1.2 電動機車產業之發展趨勢 8 2.1.3 台灣電動機車產業之現況發展 10 2.1.4 電動機車相關研究 15 2.1.4.1 充電站之設施規劃問題 15 2.1.4.2 電池交換站之設施規劃問題 16 2.1.4.3 充電策略 16 2.2 載具共享系統相關文獻 17 2.2.1 汽車租借系統 17 2.2.2 自行車共享系統 18 2.2.2.1 設施區位設置 18 2.2.2.2 車輛配置運補 20 2.3 粒子群最佳化演算法 23 2.4 小結 25 第三章 電動機車共享系統車輛佈署問題 26 3.1 問題描述與假設 26 3.1.1 問題描述 26 3.1.2 問題假設 29 3.2 混整數規劃模式 30 3.2.1 參數與變數定義 30 3.2.2 數學模式 31 3.2.2.1 充電柱模式 31 3.2.2.2 電池交換模式 34 3.3 範例說明 37 3.3.1 充電柱模式 37 3.3.2 電池交換模式 39 3.4 PSO演算法求解電動機車共享系統車輛佈署問題 41 3.5 小結 44 第四章 數值分析 45 4.1 建立網路圖 45 4.2 參數設定 52 4.3 數值測試 55 4.3.1 充電柱模式 55 4.3.2 電池交換模式 61 4.3.3 充電柱VS.電池交換模式 65 4.3.4 小結 66 第五章 結論與未來研究方向 67 5.1 結論與貢獻 67 5.2 未來研究方向 69 參考文獻 71 附錄A、PSOCP求解數值 75 附錄B、PSOBE求解數值 80

    中文文獻
    王俊偉(2011),「以系統模擬探討公共自行車租借系統之建置及營運策略」,國立成功大學工業與資訊管理學系碩士論文。

    李其風(1997),「電動機車電瓶交換站配置方式之研究」,國立交通大學交通運輸所碩士論文。

    林柔昕(2011),「電動汽機車旅運需求電力供應設施規劃」,國立成功大學交通管理學系碩士論文。

    洪菁蓬(2011),「公共自行車租借系統之最佳租借站位址設置及車輛運補策略之研究」,國立成功大學工業與資訊管理學系碩士論文。

    徐嘉悅(2011),「電動機車能源場站設置規畫之研究:以台灣澎湖為例」,雲林科技大學全球運籌管理研究所碩士論文。

    許家興(2009),「電動車電池類型與電池基礎介紹」,車輛研測資訊,頁13-18。

    張立蓁(2010),「都會區公共自行車租借系統之設計與營運方式研究」,國立成功大學交通管理學系碩士論文。

    廖敏婷(2012),「考慮需求比例及暫時人力配置之公共自行車租借系統管理策略研
    究」,國立成功大學工業與資訊管理學系碩士論文。

    英文文獻
    Ahuja, R. K., Magnanti, T. L. and Orlin, J. B.(1993), Network flows:theory, algorithms, and applications, Prentice-Hall, New Jersey.

    Benchimol, M., Benchimol, P., Chappert, B., De La Taille, A., Laroche, F., Meunier, F., and Robinet, L.(2011), Balancing the stations of a self-service bike hire system, RAIRO- Operations Research.

    Brown, S., Pyke, D., and Steenhof, P.(2010), Electric vehicles:The role and importance of standards in an emerging market, Energy Policy, 38(7), 3797-3806.

    Campbell, A., Clarke, L., Kleywegt, A. and Savelsbergh, M.(1998), The inventory routing problem, In T. Crainic and G. Laporte, editors, Fleet Management and Logistics, Kluwer Academic Publishers.

    Chemla, D., Meunier, F. and Calvo, R. W.(2010), Balancing a bike-sharing system with
    multiple vehicles.

    Church, R. L. and ReVelle, C. S.(1976), Theoretical and computational links between the p-median,location setcovering and the maximal covering location problem, Geographical Analysis, 8, 406-415.

    Dantzig, G. and Ramser, J.(1959), The truck dispatching problem, Management Science, 6(1), 80-91.

    Daskin, M. and Owen, S.(1999), Location models in transportation, Handbook of Transportation Science, 311–360.(Boston/Dordrecht/London:Kluwer Academic Publishers)

    Deif, I. and Bodin, L.(1984), Extension of the Clarke and wright algorithm for solving the vehicle routing problem with backhauling, Kidder, Proceedings of the Babson Conference on Software Uses in Transportation and Logistic Management, 75-96.

    Demetsky, M. and Lin, B. B. M.(1982), Bus stop location and design, Transportation Engi-
    neering Journal of ASCE, 108, 313-327.

    Edelstein, M., and Melnyk, M.(1977), The Pool Control System, Interfaces, 8(1-Part-2), 21-36.

    Ernst, A. T., Gavriliouk, E. O. and Marquez, L.(2011), An efficient lagrangean heuristic for rental vehicle scheduling, Computers and Operations Research, 38(1), 216-226.

    Federgruen, A. and Zipkin, P.(1984), A combined vehicle routing and inventory allocation problem, Operations Research, 32, 1019-1032.

    Fink, A. and Reiners, T.(2006), Modeling and solving the short-term car rental logistics problem, Transportation Research Part E:Logistics and Transportation Review, 42(4), 272 – 292.

    Fu, T. T.(2008), A multi-criteria parametric evaluation of the refuelling strategies for scooters, Journal of Engineering Design,Volume 19, Issue 3.

    Golden, B. L., Baker, E. K., Alfaro, J. L. and Schaffer, J. R.(1985), The vehicle routing problem with backhauling:two approaches, working paper MS/S 85-017, University of Maryland, College Park.

    Hakimi, S. L.(1964), Optimum locations of switching centers and the absolute centers and medians of a graph. Operations Research, 12(3), 450-459.

    Hokey, M.(1989), The multiple vehicle routing problem with simultaneous delivery and pick-up points, Transportation Research Part A:General, 23(5), 377-386.

    Laporte, G., Mesa, J. A., and Ortega, F. A.(2000), Optimization methods for the planning of rapid transit systems, European Journal of Operational Research, 122(1), 1-10.

    Li, Z. and Tao, F.(2010), On determining optimal fleet size and vehicle transfer policy for a car rental company, Computers & Operations Research, 37(2), 341-350.

    Lin, J. R. and Yang, T. H.(2011), Strategic Design of Public Bicycle Sharing Systems with Service Level Constraints, Transportation Research Part E, 47(2), 284-294.

    Lin, J. R., Yang, T. H. and Chang, Y. C.(2013), A Hub Location Inventory Model for Bicycle Sharing System Design: Formulation and Solution, Computers & Industrial Engineering, 65(1), 77-86.

    Murray, A. T.(2001), Strategic analysis of public transport coverage, Socio-Economic Planning Sciences, 35(3), 175-188.

    Rado, F.(1988), The euclidean multifacility location problem. Operations Research, 36(3),
    485-492.

    Raviv, T., Tzur, M., and Forma, I. A.(2010), Static Repositioning in a Bike-Sharing System
    :Models and Solution Approaches, Working Paper.

    Pachon, J. E., Iakovou, E., Ip, C., and Aboudi, R.(2003), A Synthesis of Tactical Fleet Planning Models for the Car Rental Industry, IIE Transactions, 35(9), 907-916.

    Pachon, J., Iakovou, E. and Chi, I.(2006), Vehicle fleet planning in the car rental industry, Journal of Revenue and Pricing Management, 5(3), 221-236.

    Xu, H., Chen, Z. L., Rajagopal, S. and Arunapuram, S.(2003), Solving a practical pickup and delivery problem, Transportation Science, 37, 347-364.

    Wang, Y. W.(2007), An optimal location choice model for recreation-oriented scooter recharge stations, Transportation Research Part D:Transport and Environment, 12(3), 231-237.

    Wang, Y. W.(2008), Locating battery exchange stations to serve tourism transport:A note, Transportation Research Part D 13 193-197.

    Wang, Y. W.(2008), Simulation of service capacity an electric scooter refueling system, Transportation Research Part D:Transport and Environment Volume 13, Issue 2, Pages 126–132.

    Shu, J., Chou, M., Liu, Q., Teo, C. P., and Wang, I. L.(2013), Models for Effective Deployment and Redistribution of Bicycles within Public Bicycle-Sharing Systems, Operations Research (accepted in Aug, 2013).

    網站資料
    BP Statistical Review of World Energy:http://www.bp.com/sectionbodycopy.do?categoryId=7500&contentId=7068481
    Electric Bikes Worldwide Reports(EBWR):http://www.ebwr.com/
    IEK產業情報網:http://ieknet.iek.org.tw/signoff.do
    International Energy Agency(IEA):http://www.iea.org/
    TES電動機車產業網站:http://proj.moeaidb.gov.tw/lev/default.asp
    台灣電動車產業聚落交流平台:http://www.ev.org.tw/Home/Index
    綠色能源產業資訊網:http://www.taiwangreenenergy.org.tw/
    電動機車聯合測試服務中心:http://www.tes.org.tw/index.htm
    交通部網站:http://www.motc.gov.tw/
    經濟部工業局網站:http://www.moeaidb.gov.tw/external/view/tw/index.html
    經濟部能源局網站: http://www.moeaboe.gov.tw/

    下載圖示 校內:2018-08-26公開
    校外:2018-08-26公開
    QR CODE