簡易檢索 / 詳目顯示

研究生: 賴禹亨
Lai, Yu-Heng
論文名稱: 形狀記憶合金驅動微夾持器之控制研究
Shape Memory Alloy Actuated Micro Gripper Control
指導教授: 張仁宗
Chang, Ren-Jung
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 145
中文關鍵詞: 反遲滯自調式控制模糊控制形狀記憶合金
外文關鍵詞: Inverse Preisach, Self-tuning control, Fuzzy control, Shape memory alloy
相關次數: 點閱:106下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文以「光機電系統控制研究室」研究多年的微夾持系統為基礎,針對類神經、解析、模糊三種Inverse Preisach補償方法,分析比較其優劣。透過對影像雜訊進行量測,濾波來降低雜訊對Inverse Preisach補償以及控制上的負面效果。並量測系統之模型誤差,以及分析其原因,並從控制結構與控制策略上,有效降低模型誤差影響。而控制器部分,由於系統具有時變性,因此分別設計自調式控制,模糊控制器,並且比較其優劣,最後將夾持器致動器與控制器,三方面整合,作定位控制,以及夾持物件。

    This thesis is based on the research of shape-memory-alloy (SMA) actuator system developed by “OME System Lab” in recent years. For the inverse Preisach compensation, we compared the performance of three methods including analytic method, neural network method, and fuzzy method and choosed the suitable one for compensating our actuator. Noise and modeling error were measured in the filter design and control structure design to improve the compensation accuracy by inverse Preisach model. In addition, fuzzy and self-tuning controller were designed for the SMA system to improve positioning performance. At last through integrating the actuator, controller and micro-gripper, the micro-gripper system performed precise positioning and gripping micro objects.

    中文摘要 I ABSTRACT II 誌謝 III 圖目錄 VII 表目錄 XIV 符號表 XV 第一章 緒論 1 1-1 前言 1 1-2 研究動機 1 1-3 文獻回顧 2 1-3.1 微致動器介紹 2 1-3.2 形狀記憶合金之驅動控制 4 1-3.3 自調式控制器與模糊控制器文獻回顧 14 1-4 研究目標 17 1-5 研究方法 17 1-6 本文架構 19 第二章 實驗系統與SMA致動器之實現 20 2-1 形狀記憶合金簡介 20 2-1.1 形狀記憶合金發展背景 20 2-1.2 形狀記憶合金效應 21 2-1.3 形狀記憶合金溫度特性 23 2-2 實驗系統架構 26 2-2.1 SMA驅動電路 27 2-2.2 形狀記憶合金致動器之製造 28 2-2.3 SMA致動器影像量測演算法 30 2-3 PREISACH MODEL原理 35 2-3.1 Preisach平面邊界 36 2-3.2 FOD曲面之建立 38 第三章 SMA靜態補償模擬與靜態補償實驗 43 3-1 以一般解析方法建立INVERSE PREISACH模型 44 3-2 由類神經網路建立INVERSE PREISACH模型 48 3-3 由模糊理論建立INVERSE PREISACH模型 54 3-4 SMA靜態補償實測 60 3-5 結果比較 63 第四章 SMA模型誤差與影像雜訊測試 65 4-1 影像量測造成之模型誤差分析 66 4-2 SMA INVERSE PREISACH補償之模型誤差分析 76 4-3 一般PID控制器之優缺點分析 83 第五章 控制器之設計 84 5-1 自調式控制器 84 5-1.1 自調式控制器控制架構 84 5-1.2 系統之參數估測 86 5-1.3 基於Ziegler-Nichols Method準則之自調式PI控制器 90 5-1.4 自調式控制器之模擬 97 5-1.5 自調式控制器之系統實測 99 5-2 模糊控制器 106 5-3 實驗結果比較 117 第六章 系統整合測試 120 6-1 微夾持器 120 6-1.1 微夾持器之結構 120 6-1.2 微夾持器之運動學分析 121 6-2 SMA與微夾持器之組裝 124 6-3 微夾持器之角度估測 125 6-4 微夾持器之定位控制 128 6-5 夾持試驗 135 第七章 結論與未來展望 138 7-1 結論 138 7-2 未來展望 139 參考文獻 140 自述 145

    [1]H. Ishihara, F. Arai, and T. Fukuda, “Micro Mechatronics and Micro Actuator,” IEEE/ASM Transactions on Mechatronic, Vol. 1, No. 1, 1996.
    [2] E. Shameli, A. Alasty, H. Salaarieh, “Stability Analysis and Nonlinear Control of a Miniature Shape Memory Alloy Actuator for Precise Applications, ” Mechatronics, Vol. 15 , pp. 471-486, 2005.
    [3]E. P. Da Silva, “Beam Shape Feedback Control by Means of a Shape Memory Actuator,” Materials & Design, Vol 28, pp. 1592-1596,
    2007.
    [4]S. Majima, K. Kodama, and T. Hasegawa, “Modeling of Shape Memory Alloy Actuator and Tracking Control System with the Model,” IEEE Transaction on Control System Technology, Vol. 9, pp. 54-59, 2001.
    [5]S. M. Dutta, F. H. Ghorbel and J. B. Dabney, “Modeling and Control of a Shape Memory Alloy Actuator,” IEEE International Symposium on Intelligent Control Limassol, pp. 1007-1012, 2005.
    [6]K. K. Ahn, N. B. Kha, “Internal Model Control for Shape Memory Alloy Actuators Using Fuzzy Based Preisach Model,” Sensors and Actuators A: Physical, Vol 136, pp. 730-741, 2007.
    [7]G. Song, V. Chaudhry and C. Batur, “Precision tracking control of Shape Memory Alloy Actuators Using Neural Networks and a Sliding-mode Based Robust Controller,” Smart Materials and Structures, Vol. 12, pp. 223-231, 2003.
    [8] R. Romano, E. A. Tannuri, “Modeling, Control and Experimental Validation of A Novel Actuator Based on Shape Memory Alloys,” Mechatronics Vol. 19, 2009, pp. 1169-1177.
    [9]J. Jayenderr, R. V. Patel, S. Nikumb, and M. Ostojic, “Modeling and Control of Shape Memory Alloy Actuators,” IEEE Transaction on Control System Technology, Vol. 16, No. 2, 2008.
    [10] N. Bizdoaca, H. Hamdan and D. Selisteanu, “Fuzzy Logic Con-troller for a Shape Memory Alloy Tentacle Robotic Structure,” Proceedings of the IEEE Conference on Information & Commuation Technologies: from Theory to Applications, pp. 24-28, 2006.
    [11]A. Kumagai, T. I. Liu and P. Hozian, “Control of Shape Memory Alloy Actuators with a Neuro-Fuzzy Feedforward Model Element,” Journal of Intelligent Manufacturing, Vol. 17, pp. 45-56, 2006.
    [12]N. B. Kha and K. K. Ahn, "Position Control of Shape Memory Alloy Actuators by Using Self Tuning Fuzzy PID Controller," International Journal of Control, Automation, and Systems, Vol. 4, No. 6, pp. 756-762, 2006.
    [13]R. E. Kalman, “Design of a Self-Optimizing Control System,” Transactions of the ASME, Vol. 80, pp. 468-478, 1958.
    [14]V. Peterka, “Adaptive Digital Regulation of Noisy System,” Pre-prints 2nd IFAC Symposium on Identification and Process Parameter Estimation, pp.15-20, 1970, Prague.
    [15]J. Wieslander and B. Wittenmark, “An Approach to Adaptive Control Use Real Time Identification,” Automatica, Vol. 7, pp. 211-217, 1971.
    [16]K. J. Åström and B. Wittenmark, “On the Control of Constant but Unknown Systems,” Proceedings of the 5th IFAC World Congress, 1972, Paris.
    [17]K. J. Åström and B. Wittenmark, “On Self-Tuning Regulators,” Automatica, Vol. 9, pp. 185-199, 1973.
    [18]G. C. Goodwin and K. S. Sin, “Adaptive Filtering Prediction and Control,” Prentice-Hall, Inc., 1984.
    [19]K. J. Åström and B. Wittenmark, “Self-Tuning Controllers Based on Pole-Zero Placement,” Control Theory and Applications, IEE Proceedings D, Vol. 127, 1980.
    [20]R. Kofahl and R. Isermann, “A Simple Method for Automatic Tuning of PID-Controllers Based on Process Parameter Estimation,” American Control Conference, pp. 1143 - 1148, 1985.
    [21]P. J. Gawthrop, “Self-Tuning PID Controllers: Algorithms and Implementation,” IEEE Transactions on Automatic Control, Vol. 31, No. 3, pp. 31-39, 1986
    [22]L. A. Zadeh, “Fuzzy sets,” Information and Control, Vol. 8, No. 3, pp. 338-353, 1965.
    [23]L. A. Zadeh, “Outline of a New Approach to the Analysis of Complex Systems and Decision Processes,” IEEE Transaction on System, Man, and Cybernetics, Vol. smc-3, No. 1, 1973.
    [24]E. H. Mamdani, “Advances in the Linguistic Synthesis of Fuzzy Controllers, “International Journal of Man-Machine Studies, Vol. 8, Issue 6, pp. 669-678, 1986.
    [25]R. K. Mudi and N. R. Pal, “A Self-Tuning Fuzzy PI Controller,” Fuzzy Sets and Systems, Vol. 115, pp. 327-338, 2000.
    [26] 顧鴻壽等,“形狀記憶合金講習會”,工業技術研究院工業材料研究所,中華民國七十七年十月。
    [27] 舟久保 熙康,“形狀記憶合金”,復漢出版社,1999。
    [28] 廖南吉,“形狀記憶合金與用途”,南臺出版社,1988。
    [29] 任勇生,王世文,李俊寶,沈應鵬,“形狀記憶合金在結構主被動震動控制中的應用”,力學進展,Vol 29,pp. 19-33,1999。
    [30] J. L. Pons, D. Reynaerts, J. Peirs, R. Ceres, and H. VanBrussel, “Comparison of Different Control Approaches to Drive SMA Actuators,” ICAR’97, pp. 819-824.
    [31] K. Ikuta, “Mathematical Model And Experimental Verification of Shape Memory Alloy for Design Micro Actuator,” IEEE, pp103-108, 1991.
    [32] 施博偉,「形狀記憶合金驅動微夾持器之應用」,國立成功大學機械, 工程學系碩士論文,中華民國九十四年七月。
    [33] 邰翰威,「形狀記憶合金致動伺服控制與應用」,國立成功大學機械,工程學系碩士論文,中華民國九十九年六月。
    [34]A. S. Veeramani, J. H. Crews and G. D. Buckner, “Hysteretic re-current neural networks: a tool for modeling hysteretic materials and systems,” Smart Materials and Structures, Vol. 18, No. 7, 2009.
    [35]X. Yang, W. Li, Y. Wang and G. Ye, “Modeling Hysteresis in Piezo Actuator Based on Neural Networks,” ISICA 2008, LNCS 5370, pp.290-296 , 2008.
    [36]J. G. Ziegler and N. B. Nichols, “Optimum Settings for Automatic Controllers,” Transactions of the ASME, pp. 759-765, 1942.
    [37]V. Bobál, J. Böhm, J. Fessl and J. Macháček, “Digital Self-tuning Controllers,” Berlin: Springer, Inc., 2005.

    下載圖示 校內:2013-07-29公開
    校外:2013-07-29公開
    QR CODE