| 研究生: |
白青山 Son, Bach Thanh |
|---|---|
| 論文名稱: |
添加還原氧化石墨烯於鈣鈦礦太陽能電池之電子傳輸層 Integration of Reduced Graphene Oxide in Electron Transport Layer of Perovskite Solar Cells |
| 指導教授: |
丁志明
Ting, Jyh-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 52 |
| 外文關鍵詞: | Nitrogen-doped graphene, Perovskite solar cells, Electron transport layer |
| 相關次數: | 點閱:95 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
The electron transport layer (ETL) plays a crucial role in facilitating electron extraction and inhibiting recombination in perovskite solar cells. Reduced graphene oxide (RGO) is a potential complement to the common ETL material TiO2 thanks to its excellent electrical conductivity and mobility and the suitability for scalable, low-temperature solution-processed deposition. RGO powder is synthesized through microwave-assisted hydrothermal method, and various amounts of o-phenylenediamine (OPD) are added into the precursor to create Nitrogen-doped RGO of different doping levels. The as-synthesized RGO samples characteristics are examined by XRD, XPS and Raman spectroscopy. The perovskite layer of CH3NH3PbI3 is deposited on RGO and TiO2 using a two-step spin coating process, and the as-deposited perovskite characteristics are examined through photoluminescence and UV-Vis spectroscopy. Finally, photovoltaic performance measurements of completed RGO-integrated devices is conducted under illumination of 1 Sun AM 1.5G sunlight simulator.
REFERENCES
1. Bouclé, J. and N. Herlin-Boime, The benefits of graphene for hybrid perovskite solar cells. Synthetic Metals, 2016. 222: p. 3-16.
2. O'Regan, B. and M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991. 353: p. 737.
3. Kojima, A., et al., Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society, 2009. 131(17): p. 6050-6051.
4. Kim, H.-S., et al., Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%. Scientific Reports, 2012. 2: p. 591.
5. Lee, M.M., et al., Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science, 2012. 338(6107): p. 643.
6. Park, N.-G., Perovskite solar cells: an emerging photovoltaic technology. Materials Today, 2015. 18(2): p. 65-72.
7. Stranks, S.D., et al., Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber. Science, 2013. 342(6156): p. 341.
8. Burschka, J., et al., Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 2013. 499: p. 316.
9. Yang, W.S., et al., High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 2015. 348(6240): p. 1234.
10. Ball, J.M., et al., Low-temperature processed meso-superstructured to thin-film perovskite solar cells. Energy & Environmental Science, 2013. 6(6): p. 1739-1743.
11. Bi, D., et al., Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2 mesostructures. RSC Advances, 2013. 3(41): p. 18762-18766.
12. Liu, M., M.B. Johnston, and H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 2013. 501: p. 395.
13. Chen, Q., et al., Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process. Journal of the American Chemical Society, 2014. 136(2): p. 622-625.
14. Heo, J.H., et al., Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency. Energy & Environmental Science, 2015. 8(5): p. 1602-1608.
15. Schwierz, F., Graphene transistors. Nature Nanotechnology, 2010. 5: p. 487.
16. Nair, R.R., et al., Fine Structure Constant Defines Visual Transparency of Graphene. Science, 2008. 320(5881): p. 1308.
17. Liu, Z., S.P. Lau, and F. Yan, Functionalized graphene and other two-dimensional materials for photovoltaic devices: device design and processing. Chemical Society Reviews, 2015. 44(15): p. 5638-5679.
18. Eda, G., et al., Insulator to Semimetal Transition in Graphene Oxide. The Journal of Physical Chemistry C, 2009. 113(35): p. 15768-15771.
19. Jun, L., et al., Hole and Electron Extraction Layers Based on Graphene Oxide Derivatives for High-Performance Bulk Heterojunction Solar Cells. Advanced Materials, 2012. 24(17): p. 2228-2233.
20. Li, S.-S., et al., Solution-Processable Graphene Oxide as an Efficient Hole Transport Layer in Polymer Solar Cells. ACS Nano, 2010. 4(6): p. 3169-3174.
21. Stankovich, S., et al., Graphene-based composite materials. Nature, 2006. 442: p. 282.
22. Tung, V.C., et al., High-throughput solution processing of large-scale graphene. Nature Nanotechnology, 2008. 4: p. 25.
23. Eda, G., G. Fanchini, and M. Chhowalla, Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nature Nanotechnology, 2008. 3: p. 270.
24. Peng, Y., et al., Efficient Semitransparent Perovskite Solar Cells with Graphene Electrodes. Advanced Materials, 2015. 27(24): p. 3632-3638.
25. Wang, J.T.-W., et al., Low-Temperature Processed Electron Collection Layers of Graphene/TiO2 Nanocomposites in Thin Film Perovskite Solar Cells. Nano Letters, 2014. 14(2): p. 724-730.
26. Han, G.S., et al., Reduced Graphene Oxide/Mesoporous TiO2 Nanocomposite Based Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2015. 7(42): p. 23521-23526.
27. Wu, Z., et al., Efficient planar heterojunction perovskite solar cells employing graphene oxide as hole conductor. Nanoscale, 2014. 6(18): p. 10505-10510.
28. Li, W., et al., Graphene oxide as dual functional interface modifier for improving wettability and retarding recombination in hybrid perovskite solar cells. Journal of Materials Chemistry A, 2014. 2(47): p. 20105-20111.
29. Wang, Y.-X., et al., Reduced graphene oxide with superior cycling stability and rate capability for sodium storage. Carbon, 2013. 57: p. 202-208.
30. Sari, F.N.I. and J.-M. Ting, One step microwaved-assisted hydrothermal synthesis of nitrogen doped graphene for high performance of supercapacitor. Applied Surface Science, 2015. 355: p. 419-428.
31. Zhongmin, Z., et al., Stable Inverted Planar Perovskite Solar Cells with Low-Temperature-Processed Hole-Transport Bilayer. Advanced Energy Materials, 2017. 7(22): p. 1700763.
校內:立即公開