| 研究生: |
薩宜光 Sa, Yi-Guang |
|---|---|
| 論文名稱: |
南部中央山脈之地震活動性探討 Seimotectonics of Southern Central Range |
| 指導教授: |
饒瑞鈞
Rau, Ruey-Juin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 地球科學系 Department of Earth Sciences |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 132 |
| 中文關鍵詞: | 地震重新定位 、震源機制 、伸張-橫移構造 、主餘震序列 、應力反演 |
| 外文關鍵詞: | seismotectonics, clusters, transtension, detachment |
| 相關次數: | 點閱:95 下載:13 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
觀察南部中央山脈自中央氣象局1991年1月~2003年5月之地震資料,可發現數群明顯的地震帶於此發生,且在集集大地震前後地震活動性有明顯不同的分佈趨勢。由中研院所提供的震源機制解(Broadband Array in Taiwan for Seismology,BATS),顯示南部中央山脈發生了一系列以伸張為主的正斷層,而在一個以碰撞擠壓為主的造山帶是如何發育這些正斷層呢?本研究擬利用震源之重新定位,求取震源機制解及區域應力反演來分析南部中央山脈底下的構造機制。
經由三維重新定位後,發現在集集大地震前後,本研究區域下的地震活動性有明顯地不同,且具有數個線性特徵明顯的地震群集。在集集地震前,地震分佈大致呈現近南北向及西北東南向;集集地震過後,地震分佈的走向則轉為西北東南向及近東西向,而整個區域發震的位置亦因集集地震前後有所不同。我們發現那些線性特徵明顯的地震群集幾乎由主餘震序列所構成,在此本研究使用了雙重差分定位法去對這些主餘震序列重新定位,我們看到在中央山脈核心(研究區域東側)底下有一系列地震呈現垂直分佈,而在中央山脈西翼(研究區域西側)則為較水平的地震所分佈。本研究區域之震源機制解幾乎皆為正斷層及走向滑移斷層所組成,僅夾雜少數的逆斷層。斷層面之走向大致為近南北向或西北東南向,其方向性與地震線性分佈相當一致,經由應力反演後也可以清楚地看到本區域呈現東北西南向的伸張,相信是大地應力所造成的結果。至於正斷層及走向滑移斷層產生的機制可能為海岸山脈斜碰撞中央山脈時產生局部的伸張-橫移構造,因而造成了幾組共軛破裂面,是以正斷層及走向滑移斷層的型態產生。而呈現垂直分佈的正斷層,其形成的機制可能與流體通過的路徑有關。在整個地體架構上,本研究認為中央山脈西翼底下的水平地震群,可能為滑脫面前緣,但在中央山脈核心底下的地震群則呈現了垂直分佈並穿透了此滑脫面延伸至20公里處。
We try to analyze the seismotectonics of southern Central Range by earthquake relocations, earthquake focal mechanisms and stress inversion. After 3-D earthquake relocations, we find the seismicity of southern Central Range are apparently different before and after Chi-Chi earthquake, and there are several clusters occurring in this region. Before Chi-Chi earthquake, the distributions of earthquakes appeared with strike near NW-SE and N-S; after Chi-Chi earthquake, it transferred to strike near NW-SE and E-W.
The focal mechanisms are composed of almost normal faults and strike-slip faults, and a few thrust faults. The strike of fault plane which were near NW-SE, N-S and E-W coincides with the distributions of earthquakes. Through stress inversion, we can see NE-SW extension in the area, and it might be related to regional stress.
We suggest that the normal fault and the strike-slip fault were due to partial transtension from Coastal Range obliquely colliding with Central Range. As regards the existence of vertical normal fault might be related to fluid-driven earthquakes. In this tectonic regime, we propose that the horizontal swarms below western Central Range are the detachment. The vertical swarms below the core of Central Range pierce the detachment and extend 20 km under neath.
1.交通部中央氣象局地震季報,2000,第四十七卷,第一號。
2.石再添、張瑞津、黃朝恩、石慶得、楊貴三、孫林耀明,1983a。台灣北部與東部活斷層的
地形學研究,地理研究報告,師大地理研究所,9期,頁20-72。
3.石再添、鄧國雄、張瑞津、石慶得、楊貴三、許民楊,1984。台灣西部與南部活斷層的地
形學研究,國立台灣師範大學地理學研究,第十期,第49-94頁。
4.朱傚祖和游明聖,1997。台東縱谷地震與斷層關係之研究。行政院國家科學委員會專題研
究計劃成果報告NSC-86-2116-M-047-002,133頁。
5.林朝棨,1957。臺灣地形,臺灣省通志稱,第1卷第1期,臺灣省文獻會,424頁。
6.耿文溥,1967。台灣南部甲仙及旗山間之地質,台灣省地質調查所彙刊,第19號,第1-13
頁。
7.許中民,1986。台灣南端恆春半島第四紀後期構造運動之研究,國立台灣大學地質研究所
博士論文,135頁。
8.詹新甫和耿文溥,1968。臺灣西南部新第三紀地層及主要地質構造,第十一號,45-59頁。
9.顏滄波和田沛霖,1986。南台灣之潮州斷層,中國地質學會會刊, 第二九期,第9-22頁。
10.Angelier, J., 1979. Determination of the mean principal direction of stresses
for a given fault population, Tectonophysics., 56, 17-26.
11.Angelier, J., 1984. Tectonic analysis of fault slip data sets, J. Geophys.
Res., 89, 5835-5848.
12.Audin, L., J. -P. Avouac, M. Flouzat, and J. -L. Plantet, 2002. Fluid-driven
seismicity in a stable context: The Remiremont fault zone, Vosges, France,
Geophys. Res. Lett., 29(6), 15,1-15,4.
13.Burchfiel, B. C. and L. H. Royden, 1985. North-south extension within the
convergent Himalaya region, Geology, 13, 679-682.
14.Carena S., J. Suppe, and H. Kao, 2002. The active detachment of Taiwan
illuminated by small earthquakes and its control of first-order topography,
Geology, 30 (10), 935-938.
15.Chemenda, A. I., R. -K. Yang, J. F. Stephan, E. A. Konstantinovskaya, and G.
M. Ivanov, 2001. New results from physical modeling of arc-continent
collision in Taiwan: evolutionary model, Tectonophysics, 333, 159-178.
16.Crespi, J. M., Y. C. Chan, and M. S. Swaim, 1996. Synorogenic extension and
exhumation of the Taiwan hinterland: Geology, 24(3), 247-250.
17.Davis, G. H., and S. J. Reynolds, 1984, Structural geology of rocks and
regions- 2nd ed., John Wiley & Sons, INC., USA, 269-371.
18.Ellsworth, W. L. and X. Zhonghuai, 1980. Determination of the stress tensor
from focal mechanism data, abstract, Eos Trans. AGU, 61, 1117.
19.Ellsworth, W. L., 1982. A general theory for determining state of stress in
the earth from fault slip measurements, Terrea Cognita, 2, 170-171.
20.Frohlich C., 1995. Characteristics of well-determined non-double-couple
earthquake in the Harvard CMT catalog, Phys. Earth Planet. Inter., 91,
213-228.
21.Gephart, J. W., FMSI, 1990a. A Fortran program for inverting fault/slickenside
and earthquake focal mechanism data to obtain the regional stress tensor,
Comput. And Geosci., 16, 953-989.
22.Gephart, J. W., 1990b. Stress and the direction of slip on fault planes,
Tectonics, 9, 845-858.
23.Gephart, J. W., and D. W. Forsyth, 1984. An improved method for determining
the regional stress tensor using earthquake focal mechanism data:
application to the San Fernando earthquake sequence. J. Geophys. Res., 100,
22,197-22,213.
24.Gomberg, J. S., K. M. Shedlock, and S. W. Roecker, 1990, The effect of S-wave
arrival times on the accuracy of hypocenter estimation, Bull. Seismol. Soc.
Am., 80, 1605-1628.
25.Horálek, J., J. Šílený and T. Fischer, 2002. Moment tensors of the January
1997 earthquakes swarm in NW Bohemia(Czech Republic): double-couple vs.
non-double-couple events, Tectonophysics, 356, 65-85.
26.Jones, R. R., R. E. Holdsworth, and W. Bailey, 1997. Lateral extrusion in
transpression zones: the importance of boundary conditions, J. Struct.
Geol., 19(9), 1201-1217.
27.Julian, B. R., and S. A. Sipkin, 1985. Earthquakes processes in the Long
Valley caldera, California, J. Geophys. Res., 90, 11155-11169.
28.Julian, B. R., A. D. Miller, and G. R. Foulger, 1998. Non-double-couple
earthquakes, Rev. Geophys., 36(4), 525-549.
29.Kao, H., 2002. Seismogenic patterns of the 1999 Chi-Chi, Taiwan, earthquake
sequence: Source parameters of aftershocks and tectonic implications on
orogeny, submitted to J. Geophys. Res.
30.Kissling E., W. L. Ellsworth, D. Eberhart-Phillip, and U. Kradolfer, 1994,
Initial reference models in local earthquake tomography, J. Geophys. Res.,
99, 19,635-19,646.
31.Kissling, E., Kradolfer, U., and Maurer, H., 1995. VELEST user’s guide-short
introduction, Tech. Rep., Institute of Geophysics and Swiss Seismological
Service, ETH Zurich.
32.Kisslinger, C., 1980. Evaluation of S to P amplitude ratios for determining
focal mechanisms from regional network observations, Bull. Seismol. Soc.
Am., 70(4), 999-1014.
33.Lin, C. H., 2000. Thermal modeling of continental subduction and exhumation
constrained by heat flow and seismicity in Taiwan, Tectonphysics, 324,
189-201.
34.Lin, C. H., 2002. Active continental subduction and crustal exhumation: the
Taiwan orogeny, Terra Nova, 14, 281-287.
35.Malavieille, J., and A. I. Chemenda, 1997, Impact of initial geodynamic
setting on structure, ophiolite emplacement and tectonic evolution of
collisional belt, Ofioliti, 22, 3-13.
36.McKenzie, D. P., 1969. The relation between fault plane solutions and the
directions of the principal stress, Bull. Seismol. Soc. Am., 59, 591-601.
37.Meltzer, A., G. Sarker, B. Beaudoin, L. Seeber, and J. Armbruster, 2001.
Seismic characterization of an active metamorphic massif, Nanga Parbat,
Pakistan Himalaya, Geology, 29(7), 651-654.
38Meng, C.Y., 1967. The structural development of the southern half of western
Taiwan, Proc. Geol. Soc. China, 10, 77-82.
39.Michael, A. J. , 1984. Determination of stress from slip data: faults and
fold, J. Geophys. Res., 89, 11,517–11,526.
40.Michael, A. J., 1987a. Use of focal mechanisms to determine stress: a control
study, J. Geophys. Res., 92, 357-368.
41.Michael, A. J., 1987b. Stress rotation during the Coalinga aftershock
sequence, J. Geophys. Res., 92, 7963–7979.
42.Northrup, C. J., 1996. Structure expressions and tectonic implications of
general noncoaxial flow in the midcrust of a collisional orogen: The
northern Scandinavian Caledonides, Tectonics, 15(2), 490-505.
43.Pavlis, G. L., 1986. Appraising earthquake hypocenter location errors: a
complete, practical approach for single-event location, Bull. Seismol. Soc.
Am., 76, 1699-1717.
44.Rau, R. J., and F. T. Wu, 1995, Tomographic imaging of lithospheric structures
under Taiwan, Earth Planet. Sci. Lett., 133, 517-532.
45.Rau, R. J., 1996a, 3-D tomography, focal mechanisms, and Taiwan orogeny, Ph.
D. Thesis, 222 pp.
46.Rau, R. J., F. T. Wu, and T. C. Shin, 1996b. Regional network focal mechanism
determination using 3-D velocity model and SH/P amplitude ratio, Bull.
Seismol. Soc. Am., 86, 1270-1283.
47.Shin, T. C., 1993. The calculation of local magnitude from the simulated
Wood-Anderson seismograms of the short-period seismograms in the Taiwan
area, TAO, 4, 155-170.
48.Snoke, J. A., J. W. Munsey, A.. G. Teague, and G. A. Bollinger, 1984. A
program for focal mechanism determination by combined use of polarity and
SV-P amplitude ratio data, Earthquke Notes, 55(3), 15.
49.Sue, C., F. Thouvenot, and J. Frechet, 1999. Widespread extension in the core
of the western Alps revealed by earthquake analysis, J. Geophy. Res., 104
(11), 25611-25622.
50.Teng, L. S., C. T. Lee, C. H. Peng, W. F. Chen, and C. J. Chu, 2001. Origin
and geological evolution of the Taipei basin, northern Taiwan, Western
Pacific Earth Sciences, 1(2), 115-142.
51.Waldhauser, F., W. L. Ellsworth, 2000. A double-difference earthquake location
Algorithm: method and application to the northern Hayward fault,
California, Bull. Seismol. Soc. Am. 90, 1353-1368.
52.Zoback, M. L. 1992. First- and second-order patterns of stress in the
lithosphere: the world stress map project, J. Geophys. Res., 97,
11,703-11,728.