簡易檢索 / 詳目顯示

研究生: 梁博智
Liang, Bo-Zhi
論文名稱: 不同披覆條件對鑭-鈰-鈷-錳系蜂巢狀波洛斯凱特型觸媒用於甲烷燃燒反應之效應
Effect of Coating Conditions on the Performance of Honeycomb-Supported La-Ce-Co-Mn Perovskite-type Catalysts for Methane Combustion
指導教授: 翁鴻山
Weng, Hung-Shan
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 161
中文關鍵詞: 附著力,合成氣燃燒,Perovskite觸媒,蜂巢狀觸媒
外文關鍵詞: Syngas combustion, Adhesion, Monolithic catalyst, Perovskite-type catalyst
相關次數: 點閱:83下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了研發未來可應用於氣渦輪引擎之合成氣燃燒的蜂巢狀觸媒,本研究在兼顧觸媒活性的前提下,嘗試不同的披覆方法來增強蜂巢狀陶瓷載體對波洛斯凱特(perovskite)型觸媒的附著力。
    實驗分二階段進行。在第一階段中,首先選用碳氫化合物中最不易燃燒的甲烷作為反應氣體,以它的催化燃燒難易做為指標;而觸媒方面則是選用La0.7Ce0.3Co0.6Mn0.4O3作為活性物質。在改良蜂巢狀陶瓷載體與觸媒間吸附力的初步實驗中,發現以稀薄溶膠法直接擔載活性物質能得到最佳的附著力。之後改變檸檬酸於稀薄溶液中之添加量,找出最適合的披覆條件,期能獲得最佳催化活性,此外也利用超音波震盪器、BET、SEM、TEM、Nano Focus和XRD等儀器與設備,探討影響觸媒吸附力與催化活性之因素。結果顯示當金屬鹽離子(Me)與檸檬酸(CA)的莫耳比例為1:2,同時擁有卓越的附著力與不錯的催化活性。
    第二階段份則是取第一階段最好的條件製成蜂巢狀觸媒,應用在合成氣潔淨燃燒,反應氣體則選擇合成氣中主要的成分(氫氣、一氧化碳、甲烷)。在進行個別燃燒中,合成氣各成份氣體被蜂巢狀perovskite觸媒催化的難易程度依序為:CO>H2>CH4。在蜂巢狀perovskite觸媒混合氣燃燒中,改變氣體總濃度及各成份的比例,CO的添加皆無法對H2產生提前引燃的作用。當1 % CH4添加於5 % H2+5% CO的合成氣進行燃燒,所有氣體成份皆可在700 ℃下達完全轉化。最後以蜂巢狀觸媒催化含10 %CO與10 %H2的合成氣燃燒,發現當WHSV為200 L g-1 hr-1在600 ℃下可以達到96 %以上的轉化率。

    In order to apply the honeycomb-supported catalyst to syngas fuelled gas turbine, this research, focusing catalyst with high activity and durability, tries to promote the adhension between with the perovskite-type catalyst and the cordierite honeycomb monolithic support by using various coating methods.
    The experiments were carried out in two steps. In the first step, we chose methane which is the most difficult to oxidize among hydrocarbons as the reacting gas, and we used La0.7Ce0.3Co0.6Mn0.4O3 as the active species. In the preliminary experiment for improving adhension between the perovskite-type catalyst and the monolithic support, we found out that the diluted sol-gel coating method gave the strongest adhension. Therefore in the subsequent experiments, we added various moles of citric acid to the diluted sol-gel precursor. Experimental results reveal that when the molar ratio of metal ions to citric acid was 1 to 2, the catalyst prepared not only has a good adhesion, but also has a higher activity. We also characterized the catalysts by BET, SEM, TEM, Nano Focus and XRD. According to the results obtained from the above-mentioned techniques, we can understand the factors affecting the adhesion and catalytic activity.
    In the second step, we used the best coating condition choesn from the first step to prepare the honeycomb-supported catalyst, and used it for the combustion of syngas and it’s components (CO, H2 and CH4), the activities of this honeycomb-supported catalyst for the components of syngas were found in the order of CO>H2>CH4. As to the combustion of mixed gas catalyzed by the honeycomb-supported catalyst, we observed that addition of CO did not cause H2 to ignite earlier. Moreover, when adding CH4 into 5 %CO+5 %H2, all of the components could be completely burned out at 700 ℃. Finally, we found that the conversions of CO and H2 in the combustion of the gas mixture containing 10 %CO+10 %H2 were above 96 % at 600 ℃ when WHSV was 200 L g-1 hr-1.

    摘要 I Abstract II 致謝 IV 目錄 V 圖目錄 VIII 表目錄 XIII 第一章 緒論 1 1-1 前言 1 1-2 研究動機與目的 5 第二章 文獻回顧 7 2-1 觸媒燃燒基本原理 7 2-2甲烷與低碳數烷烴類催化燃燒 10 2-3 Perovskite觸媒 11 2-4 Perovskite觸媒製備方法 13 2-4-1檸檬酸溶膠凝膠法 14 2-4-2乙二胺四乙酸合併檸檬酸錯合法 17 2-5 Perovskite應用於觸媒燃燒 20 2-6蜂巢狀觸媒 24 2-6-1蜂巢狀陶瓷載體(Ceramic monolith) 25 2-6-2蜂巢狀金屬載體(Metallic monolith) 26 2-6-3蜂巢狀觸媒的製備 27 2-6-4蜂巢狀觸媒用於甲烷燃燒 28 第三章 觸媒製備與實驗步驟 32 3-1 藥品與材料 32 3-2 儀器設備 33 3-3 Perovskite金屬氧化物觸媒粉末之製備 35 3-4 蜂巢狀perovskite觸媒之製備 37 3-4-1 混合披覆製備蜂巢狀perovskite觸媒 37 3-4-2 分次披覆製備蜂巢狀perovskite觸媒 39 A.檸檬酸溶膠凝膠法( Citric acid sol-gel )披覆La2O3媒介層 39 B.稀薄溶膠法披覆La0.7Ce0.3Co0.6Mn0.4O3活性層 41 C.檸檬酸溶膠凝膠法( Citric acid sol-gel )擔載活性金屬 (La0.7Ce0.3Co0.6Mn0.4O3) 43 D.泥漿披覆法(Slurry)擔載活性金屬(La0.7Ce0.3Co0.6Mn0.4O3) 45 3-4-3不同螯合劑製備蜂巢狀perovskite型觸媒 47 A.以檸檬酸當螯合劑製備蜂巢狀perovskite型觸媒 47 B.以EDTA-CA當螯合劑製備蜂巢狀perovskitev型觸媒 47 3-5 觸煤物理性質分析 49 3-5-1 熱重分析(TGA) 49 3-5-2 BET表面積分析 49 3-5-3 X射線繞射(XRD)分析 49 3-5-4 掃描式電子顯微鏡(SEM) 50 3-5-5 穿透式電子顯微鏡(TEM) 51 3-5-6共軛焦3D光學表面形貌量測儀(Nano Focus) 51 3-5-7 超音波吸附力測試 51 第四章 觸媒物性鑑定 52 4-1 熱重分析(TGA) 52 4-2 超音波吸附力測試 55 4-3 SEM分析 62 4-4 TEM分析 79 4-5 Nano Focus表面粗糙度分析 88 4-6 表面積分析與BJH孔徑分析 93 4-7 XRD繞射分析 108 4-8 影響perovskite觸媒與蜂巢狀載體吸附力原因 113 第五章 觸媒反應性能測試 115 5-1實驗設備與裝置 115 5-2觸媒化性分析實驗步驟 118 5-2-1甲烷程溫還原 (CH4-TPR) 118 5-2-2氧氣程溫氧化 (O2-TPO) 118 5-2-3甲烷程溫脫附 (CH4-TPD) 119 5-2-4氧氣程溫脫附 (O2-TPD) 119 5-2-5 CH4暫態還原分析 120 5-2-6 O2暫態氧化分析 120 5-3 甲烷轉化之空白實驗 123 5-4 不同披覆法對蜂巢狀perovskite觸媒活性之影響 123 5-5 改變檸檬酸量對稀薄溶膠法擔載活性物質之影響 124 5-6 以稀薄溶膠法-溶膠凝膠分次披覆法擔載活性物質之效果 124 5-7 以稀薄溶膠法披覆不同量的活性物質於蜂巢狀陶瓷載體對觸媒活性之影響 125 5-8 不同螯合劑對蜂巢狀perovskite觸媒活性之影響 125 5-9 鍛燒溫度對蜂巢狀perovskite觸媒活性之影響 126 5-10 Perovskite觸媒粉末與蜂巢狀perovskite觸媒活性之比較 126 5-11 蜂巢狀perovskite觸媒穩定性測試 127 5-12 混合氣體觸媒燃燒測試 136 5-12-1 各種氣體燃燒轉化之空白實驗 136 5-12-2 Perovskite觸媒粉末用於催化單一氣體燃燒之活性之比較137 5-12-3 Perovskite觸媒粉末用於催化混合氣體燃燒之活性測試 137 5-12-4 蜂巢狀perovskite觸媒用於催化單一氣體燃燒之活性之比較138 5-12-5 蜂巢狀perovskite觸媒用於催化混合氣體燃燒之活性測試138 5-13 Perovskite觸媒催化CH4之機制 146 5-13-1 CH4之TPR、TPD與O2-TPO、TPD分析 146 第六章 總結 151 6-1結論 151 6-2 未來研究方向與建議 152 參考文獻 154 附錄一 159 附錄二 添加甲烷對高濃度合成氣燃燒的效應 160 自述 161

    1.BP Statistical Review of World Energy 2008.
    2.徐恆文,“煤炭氣化發電之能源優勢”,節能資訊網/節能專家園地,民國93年7月28號(2004).
    3.P. Forzatti, G. Groppi, “Catalytic combustion for the production of energy, Catal. today”, 54, 165 (1999).
    4.J.C. G. Andrae, D. Johansson, M. Bursell, R. Fakhrai, J. Jayasuriya, A. Manrique Carrera, “High-pressure catalytic combustion of gasified biomass in a hybrid combustor”, Appl. Catal. A, 293, 129 (2005).
    5.S. Cimino, A. Di Benedetto, R. Pirone, G.. Russo,“CO, H2 or C3H8 assisted catalytic combustion of methane over supported LaMnO3 monoliths”, Catal. Today, 29 ,33 (2003).
    6.J.J. Liang, H.S. Weng, “Rearrangement and Disproportionation of Toluene over La1−xSrxNiO3 Catalysts”, J. Catal. , 140, 302 (1993).
    7.C.C. Chang, H.S. Weng, Ind. Eng. Chem. Res., 24, 267 (1993).
    8.C.H. Wang, C.L. Chen, H.S Weng, “Surface properties and catalytic performance of La1-xSrxFeO3 perovskite-type oxides for methane combustion”, Chemosphere, 57, 1131 (2004).
    9.C.C. Chang, H.S. Weng, “Deep oxidation of toluene on perovskite catalyst”, Ind. Eng. Chem. Res., 32, 2930 (1993).
    10.C.C. Chang, H.S. Weng, “An Improvement on the Preparation of La-Sr-Co Perovskite by the Oxalate Method”, Ind. Eng. Chem. Res., 31,1615 (1992).
    11.S.T. Shen, H.S. Weng, “Comparative Study of Catalytic Reduction of Nitric Oxide with Carbon Monoxide over the La1-xSrxBO3 (B = Mn, Fe, Co, Ni) Catalysts”, Ind. Eng. Chem. Res., 37, 2654 (1998).
    12.S.T. Shen, H.S. Weng, J. Chin. Inst. Chem. Eng., 29, 211 (1998).
    13.蘇崇毅,“蜂巢狀波洛斯凱特型觸媒用於合成氣燃燒之研究”,國立成功大學化學工程學系碩士論文 (2007).
    14.劉胡丞,“應用於合成氣燃燒反應之蜂巢狀波洛斯凱特型觸媒中媒介層之改質” ,國立成功大學化學工程學系碩士論文 (2008).
    15.K. Eguchi, H. Arai, “Recent Advanced in High Temperature Catalytic Combustion”, Catal. Today, 29(1-4), 379 (1996).
    16.Charles N. Satterfield, “Heterogeneous Catalysis in Industrial Practice,” McGraw-Hill, 2nd.
    17.T. V. Choudhary, S. Banerjee, V. R. Choudhary, “Catalysts for combustion of methane and lower alkanes”, Appl. Catal. A, 234, 1 (2002).
    18.J.B. Goodenogh, J.M. Longo, “Landolt-Bornstein New Series”,Speinger-Verlag Berlin and New York,V4. Parya. 126 (1970).
    19.C. Li, K.C. Kwan Soh, P. Wu, “Formability of ABO3 perovskites”, J. Alloys and compounds, 372, 40 (2004).
    20.沈孝宗,“以波洛斯凱特型觸媒催化一氧化氮還原反應之比較研究”,國立成功大學化學工程學系博士論文 (1998).
    21.M.P. Pechini, “Method of Preparing Lead and Alkaline Earth Titanates and Niobates and Coating Method Using the Same to From a Capacitor”, U. S. Pat., No. 3 330 697, Jul. 11 (1967).
    22.René H. E. van Doorn, † Henk Kruidhof, Arian Nijmeijer, Louis Winnubst, Anthony J. Burggraaf, “Preparation of La0.3Sr0.7CoO3-δ perovskite by thermal decomposition of metal-EDTA complexes”, J. Mater. Chem., 8, 2109 (1999).
    23.L. Bouyssiéres, R. Schifferli, L. Urbina, P. Araya, J. M. Palacios, “Study of perovskites obtained by the sol-gel method”, J. Chil. Chme. Soc, 50, 1 (2005).
    24.M.J. Koponen, T. Venäläinen, M. Suvanto, K. Kallinen, T.-J.J. Kinnunen, M. Härkönen, T. A. Pakkanen, “Methane conversion and SO2 resistance of LaMn1−xFexO3 (x = 0.4, 0.5, 0.6, 1) perovskite catalysts promoted with palladium”, J. Molecular Catal. A, 258, 246 (2006).
    25.黃玉婷,“鑭系波洛斯凱特奈米微粉之製備及其特性”,國立成功大學化學工程學系碩士論文 (2000).
    26.H. Taguchi, S. I. Matsu-ura, M. Nagao, “Synthesis of LaMnO3+δ by Firing Gels Citric Acid”, J. Solid State Chem. ,129, 60 (1997).
    27.Z. Shao, W. Yang, Y. Cong, H. Dong, J. Tong, G. Xiong1, “Investigation of the permeation behavior and stability of a Ba0.5Sr0.5Co0.8Fe0.2O3-δ oxygen membrane”, J. Membrane Science, 172, 177 (2000).
    28.Z. Shao, G. Xiong, S. Sheng, H. Chen, L. Li, “New methods to prepare perovskite-type La0.8Sr0.2CoO3 catalyst at low temperature”, Stud. Surf. Sci. Catal., 118, 431 (1998).
    29.P.A. Lessing, “Mixed-Cation Oxide Powers via Polymeric Precursors”, Am. Ceram. Soc. Bull. , 68 (5), 1002 (1989).
    30.J.H. Choy, Y.S. Han, “Citrate route to the piezoelectric Pb(Zr,Ti)O3 oxide”, J. Mater. Chem., 7(9), 1815 (1997).
    31.J.H. Choy, Y.S. Han , J.T. Kim, Y.H. Kim, “Citrate Route to Ultra-fine Barium Polytitanates with Microwave Dielectric Properties”, J. Mater. Chem., 5(1), 57 (1995).
    32.M.S.G. Baythoun, F.R. Sale, “Production of strontium-substituted lanthanum manganite perovskite powder by the amorphous citrate process”, J. Materials Science, 17, 2757 (1982).
    33.W. Zhou, Z. Shao*, W. Jin, “Synthesis of nanocrystalline conducting composite oxides based on a non-ion selective combined complexing process for functional applications”, J. Alloys and Compounds, 426, 368 (2006).
    34.X. Ding, Y. Liu, L. Gao, L. Guo,“Synthesis and characterization of doped LaCrO3 perovskite prepared by EDTA–citrate complexing method”, J. Alloys and Compounds, 458, 346 (2008).
    35.Y. Tao, J. Shao, J. Wang, W.G. Wang, “Synthesis and properties of La0.6Sr0.4CoO3-δ nanopowder”, J. Power Sources, 185 ,609 (2008).
    36.Z. Zhong, K. Chen, Y. Ji, Q. Yan, “Methane combustion over B-site partially substituted perovskite-type LaFeO3 prepared by sol-gel method”, Appl. Catal. A, 156, 29 (1997).
    37.N. Li, A. Boréave, J.P. Deloume, F. Gaillard, “Catalytic combustion of toluene over a Sr and Fe substituted LaCoO3 perovskite”, Solid State Ionics, 179, 1396 (2008).
    38.S. Rousseau, S. Loridant, P. Delichere, A. Boreave, J.P. Deloume, P. Vernoux, “La(1−x)SrxCo1−yFeyO3 perovskites prepared by sol–gel method: Characterization and relationships with catalytic properties for total oxidation of toluene”, Appl. Catal. B, (2008).
    39.M. Alifanti, R. Auer, J. Kirchnerova, F. Thyrion, P. Grange, B. Delmon, “Activity in methane combustion and sensitivity to sulfur poisoning of La1−xCexMn1−yCoyO3 perovskite oxides”, Appl. Catal. B, 41, 71 (2003).
    40.R.M. Heck, R.J. Farrauto, “Catalytic Air Pollution Cotrol:Commercial Technology”, Wiley, New York, (1995).
    41.R.M. Heck, R.J Farrauto, CATTECH, p. 117, December (1997).
    42.J. Lampert, S. Kazi, R.J. Farrauto, Appl. Catal. B, 14, 211 (1997).
    43.F. Kapteijn, J.J. Heiszwolf, T. A.Nijhuis, Moulijn, J. A. CATTECH, 3, 24 (1999).
    44.John W. Genus, Joep C. van Giezen, “Monoliths in catalytic oxidation”, Catal. Today, 47, 169 (1999).
    45.T. Alexander Nijhuis, Annemarie E. W. Beers, Theo Vergunst, Ingrid Hoek, Freek Kapteijn, and Jacob A. Moulijn, Catalysis reviews, 43(4), 345 (2001).
    46.S. Zhao, J. Zhang, D. Weng, Xiaodong Wu, “A method to form well-adhered γ-Al2O3 layers on FeCrAl metallic supports”, Surface and Coatings Technology, 167, 97 (2003).
    47.M. Valentini, G. Groppi, C. Cristiani, M. Levi, E. Tronconi, P. Forzatti, “The deposition of γ-Al2O3 layers on ceramic and metallic supports for the preparation of structured catalysts”, Catal. Today, 69, 307 (2001).
    48.X. Wu, D. Weng, S. Zhao, W. Chen, “Influence of an aluminized intermediate layer on the adhesion of a γ-Al2O3 washcoat on FeCrAl”, Surface and Coatings Technology, 190, 434 (2005).
    49.D. Ugues, S. Specchia, G. Saracco, Ind. Eng. Chem. Res, 43,1998 (2004).
    50.T.A. Nijhuis, M.T. Kreutzer, A.C.J. Romijn, F. Kapteijn, J.A. Moulijn, “Monolithic catalysts as more efficient three-phase reactors”, Catal. Today, 66, 157 (2001).
    51.R.M. Heck, S. Gulati, R.J. Farrauto , “The application of monoliths for gas phase catalytic reactions”, Chemical Engineering Journal, 82, 149 (2001).
    52.T. Vergunst, F. Kapteijn, J.A. Moulijn, Carbon, 40, 1891 (2002).
    53.T. Vergunst, M.J.G. Linders, F. Kapteijn, J. A. Moulijn, Catalysis reviews, 43(3), 291 (2001).
    54.T. Vergunst, F. Kapteijn, J. A. Moulijn, Appl. Catal. A, 213, 179 (2001)
    55.J. W. Genus, J. C. van Giezen, “Monoliths in catalytic oxidation”, Catal. Today, 47, 169 (1999).
    56.T. Alexander Nijhuis, Annemarie E. W. Beers, Theo Vergunst, Ingrid Hoek, Freek Kapteijn, and Jacob A. Moulijn, Catalysis reviews, 43(4), 345 (2001).
    57.徐菁卿,“蜂巢狀奈米金屬氧化物觸媒催化以氫為還原劑之一氧化氮還原反應”,國立成功大學化學工程學系碩士論文 (2005).
    58.T. Nijhuis, A. Beers, T. Vergunst, I. Hoek, F. Kapteijn, and J. A. Moulijn, “Preparation of monolithic catalysts”,Catalysis reviews, 43, 345, (2001).
    59.L.A. Isupova, G.M. Alikina, S.V. Tsybulya, A.N. Salanov, N.N. Boldyreva, E.S. Rusina, I.A. Ovsyannikova, V.A. Rogov, R.V. Bunina,V.A. Sadykov, “Honeycomb-supported perovskite catalysts for high-temperature processes”, Catal. Today, 75, 305 (2002).
    60.S. Cimino, L. Lisi, R. Pirone, G. Russo, M. Turco, Catal. Today, 59, 19 (2000)
    61.Anna Musialik-Piotrowska, Krystyna Syczewska, “Combustion of volatile organic compounds in two-component mixtures over monolithic perovskite catalysts”, Catal. Today, 59, 269 (2000).
    62.S. Cimino, R. Pirone, L. Lisi, “Zirconia supported LaMnO3 monoliths for the catalytic combustion of methane”, Appl. Catal. B, 35, 243 (2002).
    63.L. Fabbrini, I. Rossetti, L. Forni, “Effect of primer on honeycomb-supported La0.9Ce0.1CoO3±δ perovskite for methane catalytic flameless combustion”, Appl. Catal. B, 44, 107 (2003).
    64.L. Fabbrini, I. Rossetti, L. Forni, “La2O3 as primer for supporting La0.9Ce0.1CoO3±δ on cordieritic honeycombs”, Appl. Catal. B, 56, 221 (2005).
    65.L. Fabbrini, I. Rossetti, L. Forni, “Effect of honeycomb supporting on activity of LaBO3±δ perovskite-like catalysts for methane flameless combustion” Appl. Catal. B, 63, 131 (2006).
    66.F. Yin, S. Ji , N. Chen, M. Zhang, L. Zhao,C. Li , H. Liu, “Ce1-xCuxO2-x /Al2O3/FeCrAl catalysts for catalytic combustion of methane”, Catal. Today, 105, 372 (2005).
    67.F. Yin, S. Ji, B. Chen, L. Zhao, H. Liu, C. Li, “Preparation and characterization of LaFe1-xMgxO3/Al2O3/FeCrAl:Catalytic properties in methane combustion”, Appl. Catal. B, 66, 265 (2006).
    68.N. Chen, S. Ji, F. Yin, L. Zhao, W. Wang , C. Li, H. Liu,“Preparation of LaAl1-xFexO3/ Al2O3/FeCrAl Catalyst and Its Catalytic Performance for Methane Combustion”,Chin. J. Catal., 26(11), 1017 (2005).
    69.P. Ciambelli, V. Palma, S. F. Tikhov, V. A. Sadykov, L. A. Isupova, L. Lisi, Catal. Today, 47, 199 (1999).
    70.M. Popa, J. Frantti, M. Kakihana, Solid state Ionics, 135, 154 (2002).
    71.W.D. Yang, Y.H. Chang, S.H. Huang, Journal of the European Ceramic Society, 25, 3611 (2005).
    72.K. Zhao, D. Cui, T. Xu, Q. Zhou, S. Hui, H. Hu, “Effects of hydrogen addition on methane combustion”, Fuel Processing Technology, (2008).
    73.S. Cimino, G. Landi, L. Lisim G. Russo, Catal. Today, 117, 454 (2006).
    74.M. Alifanti, J. Kirchnerova, B. Delmon, D, Klvava, “Methane and propane combustion over lanthanum transition-metal perovskites: role of oxygen mobility” Appl. Catal. A, 262, 167 (2004).
    75.V.C.Belessi, A.K. Ladavos, P.J. Pomonis, “Methane combustion on La–Sr–Ce–Fe–O mixed oxides: bifunctional synergistic action of SrFeO3−x and CeOx phases”, Appl. Catal. B, 31, 183 (2001).
    76.R. Leanza, I. Rossetti, L. Fabbrini, C. Oliva, L. Forni, “Perovskite catalysts for the catalytic flameless combustion of methane Preparation by flame-hydrolysis and characterization by TPD–TPR-MS and EPR”, Appl. Catal. B, 28, 55 (2000).

    下載圖示 校內:2010-07-03公開
    校外:2010-07-03公開
    QR CODE