簡易檢索 / 詳目顯示

研究生: 皮卡漢
Prasetia, Ari Carisza Graha
論文名稱: 以艦載無人船隊執行區域覆蓋任務之最佳子母船聯合路線規劃問題研究
Optimal Collaborative Path Planning for Area Coverage Tasks by a Parent Boat Carrying Unmanned Surface Vehicles
指導教授: 王逸琳
Wang, I-Lin
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業與資訊管理學系
Department of Industrial and Information Management
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 91
中文關鍵詞: 覆蓋路徑規劃整數規劃局部搜尋演算法時空網絡無人船
外文關鍵詞: Coverage Path Planning, Integer Programming, Local Search, Time-Space Network, Unmanned Surface Vehicles
相關次數: 點閱:130下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著傳感和無線通信技術的進步,以遠端遙控的無人船隊(USV)可取代人力駕船方式,在特殊(譬如易擱淺、觸礁)的水域巡航以執行搜尋或科研任務。當USV的航線可進行標靶區域的任務時,該標靶區域即可視為被「覆蓋」,獲取其任務效果。假設水域中有多個標靶區域散佈四處,若能有效地規劃多台 USV 路線以同時巡航,將能在更短時間內完成更多的區域覆蓋任務以獲取最大的任務效果。然而, USV 體積小、續航力短,必須與其被搭載的母船(PB)會合才能進行充換電以重新出發。因此,母船的路線也應一併規劃才能發揮最大綜效。
    本論文即探討在時限內能獲取最大任務效果的子母船聯合覆蓋路徑規劃問題,首先我們先針對母船之航線已知(但時程未知)的簡化版問題設定,建構一個以時空網路為基礎的整數規劃模型,由於該模型含有大量變數與限制式,僅能處理極小規模的情境,因此我們再以分進合擊的方式將分佈四處之標靶區域劃分成合適個數的分群任務區域,而各區域再以整數規劃模型(ICH)或局部搜尋演算法(ILS)分別處理,最後再串接母船航線。此簡化問題的測試結果顯示,ILS演算法效率極佳,但ICH模型僅適用於標靶必須較均勻分佈的情境。之後,我們再進一步將PB路線設成未定,亦建構整數規劃模型、修改ICH與ILS演算法,並設計「分段式啟發演算法」(SSH),將規劃期間切成數個時段,再依序處理規模較小的整數規劃問題以串接成最後決策。測試結果顯示 SSH 與 ILS 皆有不錯之求解表現。

    Due to improvements in sensing and wireless communication technology, a fleet of unmanned surface vehicles (USVs) can now be used to search water areas for the purpose of carrying out multiple targeted operations. Specifically, multiple USVs can conduct search tasks simultaneously. However, due to its limited battery or fuel capacity, a USV requires recharging (or refueling) or battery swapping to continue longer range missions. Thus, we propose a mechanism in which USVs can depart from and return to a parent boat (PB) for recharging and data collection.
    Assuming each target has a value of importance, this thesis investigates how to calculate optimal routes for both PB and USVs so that USVs can cover all the target areas, with the total target values as the objective for operating in a limited amount of time. We propose an integer programming formulation on a time-space network for cases of a given PB path (C1) and the case where the PB path is not yet known (C2), based on techniques similar to the coverage path planning (CPP), the orienteering problem, and the two-echelon routing problem in the literature. Although mathematical formulations can be used to solve the problem, this is quite time-consuming.
    We thus designed three methods to solve the problems related to calculating good routings in a shorter time. The first method is the Iterative Clustering Heuristic (ICH) based on the clustering technique, which was intended to limit the workspace for each USV. The second method is the Iterative Local Search (ILS) algorithm based on multiple local search procedures, which was intended to further shorten the computational results. The third method is the Sequential Segmentation Heuristic (SSH), which is based on the segmentation process and was intended to limit the time-bound in each segment. The results of our preliminary computational experiments for both cases and a real-world scenario problem setting indicate that the proposed solution methods can calculate good search plans faster than the proposed integer programming model.

    Abstract in Chinese iii Abstract v Acknowledgements v Table of Contents vi List of Figure ix List of Table xii Chapter 1 1 INTRODUCTION 1 1.1. Research Background 1 1.2. Research Objective 3 1.3. Research Scope 3 1.4. Research Contribution 4 1.5. Thesis Outline 5 Chapter 2 6 LITERATURE REVIEW 6 2.1. Joint Operation of Unmanned Vehicles 6 2.2. USV Characteristic 7 2.3. Orienteering Problem 9 2.4. Coverage Path Planning 12 Chapter 3 15 MODEL DEVELOPMENT 15 3.1. Model Approach 15 3.2. Problem Definition 16 3.3. Mathematics Model 22 3.3.1. Notation 22 3.3.2. Mathematical Objective and Constraints 24 3.3.3. Case of Defined Parent Boat Path (C1) 27 3.3.4. Case of Defined Parent Boat Area (C2) 27 Chapter 4 29 HEURISTICS AND ALGORITHM PROCEDURES 29 4.1. Iterative Clustering Heuristic 29 4.1.1. Heuristic Approach Phase 1 30 4.1.2. Heuristic Approach Phase 2 36 4.2. Iterated Local Search Algorithm 37 4.2.1. Algorithm Framework 38 4.2.2 Iterated Local Search Algorithm Phase 1 40 4.2.3 Greedy USV Routing Algorithm 49 4.2.4 Iterated Local Search Algorithm Phase 2 50 4.2.5 Greedy Parent Boat Routing Algorithm 55 4.2.6 Iterated Local Search Algorithm Phase 3 56 4.3. Sequential Segmentation Heuristic 57 4.3.1. Predicting Feasible Targets 58 4.3.2. Segmentations Connections 58 Chapter 5 61 COMPUTATIONAL EXPERIMENTS AND ANALYSIS 61 5.1. Join Operation Random Network Generator 61 5.1.1. USV Edges Construction 62 5.1.2. Construction of Parent Boat Edges 63 5.1.3. USV-Parent Connection Edges Construction 64 5.1.4. Random Target generator 65 5.2. Technical Specifications 66 5.3. Settings for C1 and C2 Experimental Cases 66 5.4. Experiments Results 66 5.4.1. Scenario USV Nodes for Cases C1 and C2 67 5.4.2. Scenario Target Nodes for Cases C1 and C2 71 5.4.3. Scenario Operation Time Nodes for Case C1 and C2 73 5.4.4. Scenario PB Path for Case C2 76 5.5. An Illustrative Example with a Real-world Scenario Setting 79 5.6. Summary 81 Chapter 6 84 CONCLUSIONS AND FUTURE RESEARCH 84 6.1. CONCLUSIONS 84 6.2. FUTURE RESEARCH SUGGESTIONS 86 Reference 88

    Avellar, G., Pereira, G., Pimenta, L., & Iscold, P. (2015). Multi-UAV Routing for Area Coverage and Remote Sensing with Minimum Time. Sensors, 15(11), 27783-27803. doi:10.3390/s151127783
    Campbell, S., Naeem, W., & Irwin,G. (2012). A review on improving the autonomy of unmanned surface vehicles through intelligent collision avoidance maneuvers. Annual Reviews in Control, vol. 36, No. 2, pp. 267-283.
    Carlsson, J. G., & Song, S. (2017). Coordinated Logistics with a Truck and a Drone. Management Science, 64(9), 4052-4069. doi:10.1287/mnsc.2017.2824
    Cuda, R., Guastaroba, G., & Speranza, M. G. (2015). A survey on two-echelon routing problems. Comput. Oper. Res., 55(C), 185-199. doi:10.1016/j.cor.2014.06.008
    Cruz Chávez, M., Rodríguez-León, A., Rivera-Lopez, R., & Cruz-Rosales, M. (2019). A Grid-Based Genetic Approach to Solving the Vehicle Routing Problem with Time Windows. Applied Sciences, 9, 1. doi:10.3390/app9183656
    Dallard, H., Lam, S. S., & Kulturel-Konak, S. (2007, 13-15 Aug. 2007). Solving the Orienteering Problem Using Attractive and Repulsive Particle Swarm Optimization. Paper presented at the 2007 IEEE International Conference on Information Reuse and Integration.
    El-Hajj, R., Dang, D.-C., & Moukrim, A. (2016). Solving the Team Orienteering Problem with Cutting Planes. Computers & Operations Research, 74. doi:10.1016/j.cor.2016.04.008
    Ferrandez, S. M., Harbison, T., Weber, T., Sturges, R., & Rich, R. (2016). Optimization of a truck-drone in tandem delivery network using k-means and genetic algorithm. Journal of Industrial Engineering and Management, 9(2), 15. Retrieved from http://inis.iaea.org/search/search.aspx?orig_q=RN:48050833.
    Fu, Z., Yu, J., Xie, G., Chen, Y., & Mao, Y. (2018). A Heuristic Evolutionary Algorithm of UAV Path Planning. Wireless Communications and Mobile Computing, 2018, 1-11. doi:10.1155/2018/2851964
    Galceran, E., & Carreras, M. (2013). A survey on coverage path planning for robotics. Robotics and Autonomous Systems, 61(12), 1258-1276. doi:10.1016/j.robot.2013.09.004
    Garone, E., Naldi, R., Casavola, A., & Frazzoli, E. (2010). Cooperative mission planning for a class of carrier-vehicle systems. In 49th IEEE Conference on Decision and Control (CDC). Atlanta, Georgia, USA: IEEE
    Gunawan A., Lau H.C., Lu K. (2015) An Iterated Local Search Algorithm for Solving the Orienteering Problem with Time Windows. In: Ochoa G., Chicano F. (eds) Evolutionary Computation in Combinatorial Optimization. EvoCOP 2015. Lecture Notes in Computer Science, vol 9026. Springer, Cham
    Gunawan, A., Ng, K.M., Yu, V. F., Adiprasetyo, G., and Lau, H. C. Iterated local search algorithm for the capacitated team orienteering problem. (2018). Proceedings of the 12th International Conference on the Practice and Theory of Automated Timetabling (PATAT 2018), Vienna, Austria, August 28-31. 493-496. Research Collection School of Information Systems.
    Kareem, M. M., Ismail, M., Altahrawi, M. A., Arsad, N., Mansor, M. F., & Ali, A. H. (2018, 26-28 Nov. 2018). Grid Based Clustering Technique in Wireless Sensor Network using Hierarchical Routing Protocol. Paper presented at the 2018 IEEE 4th International Symposium on Telecommunication Technologies (ISTT).
    Khare, N., & Singh, P. (2011). Modeling and optimization of a hybrid power system for an unmanned surface vehicle. Journal of Power Sources, 198, 368–377. doi:10.1016/j.jpowsour.2011.09.080
    Khan, A., Noreen, I., & Habib, Z. (2017). On Complete Coverage Path Planning Algorithms for Non-holonomic Mobile Robots: Survey and Challenges. Journal of Information Science and Engineering, 33(1), 101-121. doi: 10.6688/JISE.2017.33.1.7
    Labadie, N., Mansini, R., Melechovský, J., & Wolfler Calvo, R. (2012). The Team Orienteering Problem with Time Windows: An LP-based Granular Variable Neighborhood Search. European Journal of Operational Research, 220(1), 15-27. doi:https://doi.org/10.1016/j.ejor.2012.01.030
    Luo, Z., Liu, Z., & Shi, J. (2017). A Two-Echelon Cooperated Routing Problem for a Ground Vehicle and Its Carried Unmanned Aerial Vehicle. Sensors, 17(5), 1144. doi:10.3390/s17051144
    Mukhina, K. D., Visheratin, A. A., & Nasonov, D. (2019). Orienteering Problem with Functional Profits for multi-source dynamic path construction. PLOS ONE, 14(4), e0213777. doi:10.1371/journal.pone.0213777
    Matos, A., Cubber, G.D., Doroftei, D., Balta, H., Silva, E., Serrano, D., Govindaraj, S., Roda, R., Lobo, V., Marques, M., et al. (2017). Operational Validation of Search and Rescue Robots. In Search and Rescue Robotics; IntechOpen: doi: 10.5772/intechopen.69497
    Mathew, N., Smith, S. L., & Waslander, S. L. (2015). Multirobot Rendezvous Planning for Recharging in Persistent Tasks. IEEE Transactions on Robotics, 31(1), 128-142. doi:10.1109/TRO.2014.2380593
    Moravec, H., & Elfes, A. (1985). High resolution maps from wide angle sonar. Proceedings. 1985 IEEE International Conference on Robotics and Automation. doi:10.1109/robot.1985.1087316
    Mirhedayatian, S. M., Crainic, T. G., Guajardo, M., & Wallace, S. W. (2019): A two-echelon location-routing problem with synchronization, Journal of the Operational Research Society, DOI: 10.1080/01605682.2019.1650625
    Perez-Carabaza, S., Besada-Portas, E., Lopez-Orozco, J. A., & de la Cruz, J. M. (2018). Ant colony optimization for multi-UAV minimum time search in uncertain domains. Applied Soft Computing, 62, 789-806. doi:https://doi.org/10.1016/j.asoc.2017.09.009
    Specht, C., Świtalski, E., & Specht, M. (2017). Application of an Autonomous/Unmanned Survey Vessel (ASV/USV) in Bathymetric Measurements. Polish Maritime Research, 24, 36-44. doi:10.1515/pomr-2017-0088
    Vansteenwegen, P., Souffriau, W., Berghe, G. V., & Oudheusden, D. V. (2009). Iterated local search for the team orienteering problem with time windows. Computation Operation Research, 36(12), 3281-3290. doi:10.1016/j.cor.2009.03.008
    Wang, X., & Wallace, S. (2016). Stochastic scheduled service network design in the presence of a spot market for excess capacity. EURO Journal on Transportation and Logistics, 5, 393–413. doi:10.1007/s13676-015-0089-1
    Yahiaoui, A.-E., Moukrim, A., & Serairi, M. (2019). The clustered team orienteering problem. Computers & Operations Research, 111, 386-399. doi:https://doi.org/10.1016/j.cor.2019.07.008
    Yuan, Y., & Tang, L. (2017). Novel time-space network flow formulation and approximate dynamic programming approach for the crane scheduling in a coil warehouse. European Journal of Operational Research. doi:10.1016/j.ejor.2017.03.007
    Zhang, J., Jia, L.-m., Niu, S., Zhang, F., Tong, L., & Zhou, X. (2015). A Space-Time Network-Based Modeling Framework for Dynamic Unmanned Aerial Vehicle Routing in Traffic Incident Monitoring Applications. Sensors (Basel, Switzerland), 15, 13874-13898. doi:10.3390/s150613874
    Zhang, J., Zhang, F., Liu, Z., & Li, Y. (2019). Efficient Path Planning Method of USV for Intelligent Target Search. Journal of Geovisualization and Spatial Analysis, 3(2), 13. doi:10.1007/s41651-019-0035-0

    下載圖示 校內:2022-02-02公開
    校外:2022-02-02公開
    QR CODE