簡易檢索 / 詳目顯示

研究生: 姜竣嚴
Chiang, Chun-Yen
論文名稱: 基於生成對抗網路之具有自動偵測隨機破壞的圖像修補模型
Automatic Detection of Random Holes for Image Inpainting based on Generative Adversarial Networks
指導教授: 王明習
Wang, Ming-Shi
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 61
中文關鍵詞: 圖像修補卷積神經網路圖像分割生成對抗網路
外文關鍵詞: Inpainting, Convolutional Neural Networks(CNN), Image Segmentation, Generative Adversarial Networks
相關次數: 點閱:141下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 圖像修補主要是用於修補圖像缺失的部分或是移除圖像中不需要的目標,過去常用的修補方法是透過自身圖像中紋理與線條結構,來進行修補或重建破壞區域內容,使整張圖像達到人類視覺分辨不出是否經過修補的效果。在過去幾年中,深度學習技術在圖像修復方面取得了顯著進步。本論文是基於生成對抗網路所建立的端對端模型,與過去各研究應用於圖像修補議題中的生成對抗網路架構不同,本研究所提出之架構除使修補質量提高外,過去可生成較高質量的修補結果,會添加破壞區域作為輸入,但在實際應用時在某些情況下破壞區域圖不好取得,所以本架構中添加可自動偵測破壞區域網路,通過偵測待修補區域後,對這些區域進行符合圖像語意之修補,以利於使用者在使用模型時,不需要再針對破壞區域進行額外前處理的動作,且本論文所提之架構與其他架構相比,不因網路層數加深而使修補效能下降,在實驗結果顯示,在小面積破壞修補上有著跟其他研究相同優良的效果,而在大面積連續破壞相較其他研究也有著較高質量的表現,此外,也可做圖像擴充,以迭代生成的方式描繪出圖像邊界外的內容。

    Image inpainting is mainly used to repair the missing parts of the image or remove unwanted objects in the image. In the past, the common inpainting method was to repair or reconstruct the corrupted area content through the texture and line structure in the image. Inpainting makes the whole image reach the human visual and can't tell if it has been repaired. In the past few years, deep learning methods have made significant progress in image restoration. In this study, an end-to-end model established by the generative adversarial networks was proposed for image inpainting. It is different from the generative adversarial networksarchitecture used in image inpainting issues as others. Usually, the higher quality inapinting model were based on corrupted image and the mask of corrupted area. However, in some situations, the corrupted area image is not easy to obtain. Hence the architecture proposed in this study was increased the function to detect mask automatically. The proposed method also improves the quality of the result. By automatically detecting the mask, the corrupted areas are completed in accordance with the image semantics, as a result, user does not need to perform additional pre-processing actions on the corrupted area when using the model. Moreover, compared with other architectures, the architecture proposed in this study does not reduce the patching performance due to the deepening of the network layer. The experimental results show that the small corrupted area inpainting has the same excellent effect as other studies; but in a large and continuous corrupted area, the results have higher quality performance than others. In addition, the model can also be used to implement image outpainting.

    摘要 I 致謝 XI 目錄 XII 表目錄 XIV 圖目錄 XV 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 2 1.3 論文架構 3 第二章 相關知識探討 4 2.1 基於傳統影像處理方式做圖像修補 4 2.2 類神經網路 (Neural Network) 5 2.2.1 多層神經網路 5 2.2.2 卷積神經網路(Convolution Neural Network) 7 2.3圖像語義分割 10 2.4生成對抗網路(Generative Adversarial Networks) 12 2.5 卷積神經網路結合生成對抗網路 14 2.6 基於GAN做圖像修補文獻探討 17 第三章 研究方法 22 3.1整體架構 22 3.2生成器架構 24 3.2.1偵測網路 24 3.2.2粗略生成網路 26 3.2.3細部生成網路 30 3.2.4門閘卷積 (Gate Convolution) 33 3.3判別器架構 35 3.4 損失函數 37 第四章 實驗結果與討論 38 4.1訓練與實驗環境 38 4.2成果展現 40 4.2.1 數據集及數據前處理 41 4.2.2 實驗成果 43 4.3討論 56 第五章 結論與未來展望 57 5.1結論 57 5.2未來展望 57 參考文獻 58

    [1] Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., ... & Dieleman, S. (2016). Mastering the game of Go with deep neural networks and tree search. nature, 529(7587), 484.
    [2] Barnes, C., Shechtman, E., Finkelstein, A., & Goldman, D. B. (2009, July). PatchMatch: A randomized correspondence algorithm for structural image editing. In ACM Transactions on Graphics (ToG) (Vol. 28, No. 3, p. 24). ACM.
    [3] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., ... & Bengio, Y. (2014). Generative adversarial nets. In Advances in neural information processing systems (pp. 2672-2680).
    [4] Dolhansky, B., & Canton Ferrer, C. (2018). Eye in-painting with exemplar generative adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(pp. 7902-7911).
    [5] Demir, U., & Unal, G. (2018). Patch-based image inpainting with generative adversarial networks. arXiv preprint arXiv:1803.07422.
    [6] Wang, Y., Tao, X., Qi, X., Shen, X., & Jia, J. (2018). Image Inpainting via Generative Multi-column Convolutional Neural Networks. In Advances in Neural Information Processing Systems (pp. 331-340).
    [7] Nazeri, K., Ng, E., Joseph, T., Qureshi, F., & Ebrahimi, M. (2019). EdgeConnect: Generative Image Inpainting with Adversarial Edge Learning. arXiv preprint arXiv:1901.00212.
    [8] Criminisi, A., Pérez, P., & Toyama, K. (2004). Region filling and object removal by exemplar-based image inpainting. IEEE Transactions on image processing, 13(9), 1200-1212.
    [9] Wohlberg, B. (2009, April). Inpainting with sparse linear combinations of exemplars. In 2009 IEEE International Conference on Acoustics, Speech and Signal Processing (pp. 689-692). IEEE.
    [10] Gomathi, R., & Kumar, A. V. A. (2010, December). An efficient GEM model for image inpainting using a new directional sparse representation: Discrete Shearlet Transform. In 2010 IEEE International Conference on Computational Intelligence and Computing Research (pp. 1-4). IEEE.
    [11] Hays, J., & Efros, A. A. (2007). Scene completion using millions of photographs. ACM Transactions on Graphics (TOG), 26(3), 4.
    [12] Convolution operation. [online]. Avaiable: https://towardsdatascience.com/simple-introduction-to-convolutional-neural-networks-cdf8d3077bac
    [13] Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 3431-3440).
    [14] Ronneberger, O., Fischer, P., & Brox, T. (2015, October). U-net: Convolutional networks for biomedical image segmentation. In International Conference on Medical image computing and computer-assisted intervention (pp. 234-241). Springer, Cham.
    [15] Radford, A., Metz, L., & Chintala, S. (2015). Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434.
    [16] Denton, E. L., Chintala, S., & Fergus, R. (2015). Deep generative image models using a laplacian pyramid of adversarial networks. In Advances in neural information processing systems (pp. 1486-1494).
    [17] Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., & Efros, A. A. (2016). Context encoders: Feature learning by inpainting. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2536-2544).
    [18] Yeh, R. A., Chen, C., Yian Lim, T., Schwing, A. G., Hasegawa-Johnson, M., & Do, M. N. (2017). Semantic image inpainting with deep generative models. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 5485-5493).
    [19] Iizuka, S., Simo-Serra, E., & Ishikawa, H. (2017). Globally and locally consistent image completion. ACM Transactions on Graphics (ToG), 36(4), 107.
    [20] Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., & Huang, T. S. (2018). Generative image inpainting with contextual attention. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 5505-5514).
    [21] Liu, G., Reda, F. A., Shih, K. J., Wang, T. C., Tao, A., & Catanzaro, B. (2018). Image inpainting for irregular holes using partial convolutions. In Proceedings of the European Conference on Computer Vision (ECCV) (pp. 85-100).
    [22] Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., & Huang, T. S. (2018). Free-form image inpainting with gated convolution. arXiv preprint arXiv:1806.03589.
    [23] He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778).
    [24] Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 4700-4708).
    [25] Zhang, H., Goodfellow, I., Metaxas, D., & Odena, A. (2018). Self-attention generative adversarial networks. arXiv preprint arXiv:1805.08318.
    [26] Arjovsky, M., Chintala, S., & Bottou, L. (2017, July). Wasserstein generative adversarial networks. In International Conference on Machine Learning (pp. 214-223).
    [27] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., & Courville, A. C. (2017). Improved training of wasserstein gans. In Advances in Neural Information Processing Systems (pp. 5767-5777).
    [28] Zhao, J., Mathieu, M., & LeCun, Y. (2016). Energy-based generative adversarial network. arXiv preprint arXiv:1609.03126.
    [29] Large-scale CelebFaces Attributes (CelebA) Dataset. [online]. Avaiable: http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
    [30] Places2: A Large-Scale Database for Scene Understanding. [online]. Avaiable: http://places2.csail.mit.edu/download.html
    [31] Yu, F., & Koltun, V. (2015). Multi-scale context aggregation by dilated convolutions. arXiv preprint arXiv:1511.07122.

    無法下載圖示 校內:2021-08-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE