簡易檢索 / 詳目顯示

研究生: 林昱廷
Lin, Yu-Ting
論文名稱: 以PD控制為基礎的DARPA SUBOFF潛艦模型自航操縱性能之數值模擬
Numerical Simulation of Free Running Manoeuvrability of DARPA SUBOFF Model Based on a PD Control
指導教授: 林宇銜
Lin, Yu-Hsien
共同指導教授: 王舜民
Wang, Shuen-Min
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 65
中文關鍵詞: 潛艦自航模型操縱性能SUBOFF六自由度運動方程式PD控制系統瞄準線導引方法(Line of Sight Guidance Algorithm)
外文關鍵詞: Submarine free-running model, Trim polygon, Manoeuvrability, SUBOFF, Six-degree-of-freedom motion, PD controller, Autopilot system
相關次數: 點閱:121下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有鑑於水下自航模型的研究對於潛艦設計的重要性,本研究開發一套潛體六自由度運動操縱模式以初步評估水下自航模型之操縱性能,並作為後續試驗之參考依據。本研究參照DARPA SUBOFF的船體型式,設計出的縮尺(λ=0.538)潛艦自航模型 (Submarine Free Running Model),透過MATLAB程式邏輯運算可進行一系列的操縱試驗,包括 : 迴旋圈 (Turning Circle)試驗、水平Z形 (Horizontal Zig-Zag)試驗、垂直Z形 (Vertical Zig-Zag)試驗、漫航 (Meander)試驗及螺旋試驗 (Spiral Test),透過模擬確定性操縱試驗將可了解此模型的基本操縱性能,如:縱移、橫移、起伏、橫搖、縱搖和平擺等六自由度運動時序列變化情形。而在PD控制系統方面,透過加入MATLAB PID Tuner套件,模擬出最佳的 K_P、 K_D值,並比較不同的上升時間 (Rise time)、設定時間 (Settling time)、超越量 (Overshoot)與峰值 (Peak),進而選擇最佳化控制增益參數,接著以瞄準線 (Line of Sight)導引方法模擬在三維空間中之航跡及六自由度運動時序列變化。最後,本文比較不同水平面及垂直面操縱控制增益參數之組合,建構一套適合用於DARPA SUBOFF潛艦自航模型之PD控制系統,後續擬將模擬結果與實驗分析進行比較。

    On the basis of a full-appendage DARPA SUBOFF model (DTRC model 5470), a scale (λ = 0.535) semi-autonomous submarine free-running model (SFRM) was designed for testing its manoeuvrability and stability in the constrained water. Prior to the experimental tests of the SFRM, a six-degree-of-freedom (6-DOF) manoeuvre model with a conventional PD controller was developed by using logic operations in MATLAB. The SFRM’s attitude and its trim polygon were realized by coping with the changes in mass and trimming moment. Via a series of manoeuvring tests in empty tanks, including turning circle, horizontal zigzag, vertical zigzag, meander, and spiral tests, the performances of the SFRM's trajectories, variations of the rudder plane and the stern plane, as well as the surge, sway, heave, roll, pitch and yaw rates, were presented in cases of three sailing speeds. In addition, the PD control system was established by considering the simulation results of these manoeuvring tests. The optimal control gains with respect to each manoeuvring test can be calculated by using the PID tuner in MATLAB. Two sets of control gains derived from the optimal characteristics parameters were selected for deciding on the most appropriate PD controller with the line-of-sight (LOS) guidance algorithm for the SFRM in the autopilot simulation. Eventually, the simulated trajectories and course angles of the SFRM would be illustrated in the post-processor based on the Cinema 4D modelling.

    摘要 I ABSTRACT II SUMMARY II INTRODUCTION III METHOD III RESULTS AND DISCUSSION V CONCLUSION X 誌謝 XI 目錄 XII 圖目錄 XV 表目錄 XVIII 符號說明 XIX 第一章 緒論 1 1-1 研究目的 1 1-2 文獻回顧 2 1-3 本文架構 4 第二章 潛艇操縱數值模型 5 2-1 座標系統 5 2-2六自由度運動方程式 8 2-3 自航模型本體慣性力 11 2-4 流體動力係數參數設定 12 2-5 計算流程 13 第三章 自航模型構型配置 15 3-1 幾何構型 15 3-2 自航模型水櫃配置 16 3-2-1自航模型質量可變模式 16 3-2-2變動質量造成重心及慣性矩變化 17 3-2-3含水櫃效應之六自由度運動慣性力導式 19 3-3 重力及浮力之影響 21 第四章 自動操縱系統 22 4-1 瞄準線導引方法 22 4-2 PD控制器 24 4-3 PID Tuner設定及控制原理 26 4-4 後處理方法 28 4-4-1 Cinema 4D 模塊組件 28 4-4-2 Cinema 4D 建模流程 29 第五章 模擬結果與分析 33 5-1靜態水櫃測試 33 5-1-1 水櫃靜態測試 33 5-1-2 俯仰多邊形測試 35 5-2 動態路徑測試模擬 37 5-2-1迴旋圈(Turning Circle)試驗 37 5-2-2水平Z形(Horizontal Zig-Zag)試驗 39 5-2-3垂直Z形(Vertical Zig-Zag)試驗 43 5-2-4漫航(Meander)試驗 47 5-2-5螺旋(Spiral)試驗 50 5-3 控制器最佳化數值結果測試 52 5-4自航模擬測試 58 第六章 結論 63 參考文獻 64

    [1] Z. Jinxin, S. Yumin, J. Lei, and C. Jian, "Hydrodynamic performance calculation and motion simulation of an AUV with appendages," in Proceedings of 2011 International Conference on Electronic & Mechanical Engineering and Information Technology, 2011, pp. 657-660.
    [2] K. S. Davidson and L. Schiff, "Turning and course keeping qualities of ships," 1946.
    [3] E. A. de Barros, L. O. Freire, and J. L. Dantas, "Development of the Pirajuba AUV," IFAC Proceedings Volumes, vol. 43, pp. 102-107, 2010.
    [4] A. J. Healey, "Obstacle avoidance while bottom following for the REMUS autonomous underwater vehicle," IFAC Proceedings Volumes, vol. 37, pp. 251-256, 2004.
    [5] H. Kondo, S. Yu, and T. Ura, "Object observation in detail by the AUV" Tri-Dog 1" with laser pointers," in MTS/IEEE Oceans 2001. An Ocean Odyssey. Conference Proceedings (IEEE Cat. No. 01CH37295), 2001, pp. 390-396.
    [6] M. T. Issac, S. Adams, M. He, N. Bose, C. D. Williams, R. Bachmayer, et al., "Manoeuvring experiments using the MUN Explorer AUV," in 2007 Symposium on Underwater Technology and Workshop on Scientific Use of Submarine Cables and Related Technologies, 2007, pp. 256-262.
    [7] D. Shea, C. Williams, M. He, P. Crocker, N. Riggs, and R. Bachmayer, "Design and testing of the Marport SQX-500 twin-pod AUV," in 2010 IEEE/OES Autonomous Underwater Vehicles, 2010, pp. 1-9.
    [8] H. J. Eaton, "Combined forward and reverse steering device for jet propelled aquatic vehicles," ed: Google Patents, 1964.
    [9] J. Feldman, "Dtnsrdc revised standarrd submarine equations of motion," DAVID W TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT CENTER BETHESDA MD SHIP …1979.
    [10] F. H. Imlay, "The complete expressions for added mass of a rigid body moving in an ideal fluid," DAVID TAYLOR MODEL BASIN WASHINGTON DC1961.
    [11] R. G. Coe, "Improved underwater vehicle control and maneuvering analysis with computational fluid dynamics simulations," Virginia Tech, 2013.
    [12] B. Hu, H. Tian, J. Qian, G. Xie, L. Mo, and S. Zhang, "A fuzzy-PID method to improve the depth control of AUV," in 2013 IEEE International Conference on Mechatronics and Automation, 2013, pp. 1528-1533.
    [13] F. Liu and H. Chen, "Motion control of intelligent underwater robot based on CMAC-PID," in 2008 International Conference on Information and Automation, 2008, pp. 1308-1311.
    [14] G. Antonelli, "On the use of adaptive/integral actions for six-degrees-of-freedom control of autonomous underwater vehicles," IEEE Journal of Oceanic Engineering, vol. 32, pp. 300-312, 2007.
    [15] M. Gertler, "G. Hagen. Standard equations of motion for submarine simulation. Report DTNSRDC 2510," David W. Taylor Naval Ship Research and Development Center, Bethesda, MD, 1967.
    [16] A. J. Healey and D. Lienard, "Multivariable sliding mode control for autonomous diving and steering of unmanned underwater vehicles," IEEE journal of Oceanic Engineering, vol. 18, pp. 327-339, 1993.
    [17] C.-W. Chen, J.-S. Kouh, and J.-F. Tsai, "Modeling and simulation of an AUV simulator with guidance system," IEEE Journal of Oceanic Engineering, vol. 38, pp. 211-225, 2013.
    [18] R. F. Roddy, "Investigation of the stability and control characteristics of several configurations of the DARPA SUBOFF model (DTRC Model 5470) from captive-model experiments," David Taylor Research Center Bethesda MD Ship Hydromechanics Dept1990.
    [19] M. Z. M. Tumari, A. F. Z. Abidin, M. S. F. Hussin, A. M. Abd Kadir, M. S. M. Aras, and M. A. Ahmad, "PSO fine-tuned model-free PID controller with derivative filter for depth control of hovering autonomous underwater vehicle," in Proceedings of the 10th National Technical Seminar on Underwater System Technology 2018, 2019, pp. 3-13.
    [20] 劉韋群, "應用模組化數學模式之潛艦操船模擬系統之研發," 2015

    無法下載圖示 校內:2025-08-17公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE