簡易檢索 / 詳目顯示

研究生: 楊子賢
Yang, Tzu-Shien
論文名稱: 奈米尺度下雷射與玻璃基板上氧化銀薄膜作用之熱效應模擬研究
Simulation Study of Thermodynamical Interaction Between Laser and AgOx Nano-Thin-Film on Glass
指導教授: 陳寬任
Chen, Kuan-Ren
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 45
外文關鍵詞: super-RENS, AgOx, nano, thermal
相關次數: 點閱:46下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • none

    The thermodynamics of laser interacting with AgOx nano-thin-film on
    glass is numerically simulated. In order to be applicable for realistic experimental
    conditions, methods of dynamical both spatial and temporal sizes
    are developed. The simulation results may provide an explanation for the
    nonlinear optical transmissions observed experimentally.
    The silver oxide nano-thin-film has been used as a mask layer in the super
    resolution near-field structure (super-RENS) disk. The experimental results
    of Liu et al.[6] show that this structure induces strong near-field intensity and
    unusual nonlinear optical effect. Another experiment[7] exhibited an increase
    of optical transmittance after the furnance heating of a glass substract with
    a thin AgOx layer to a temperature higher than the decomposition temperature.
    Our theoretical calculation based on the experimental parameters indicates
    the possibility of the optical transmittance increase after the AgOx film
    is annealed. Therefore, we employ a numerical model to study the thermodynamical
    interaction between laser and AgOx nano-thin-film on glass.
    The thermodynamical model employs numerical methods to solve heat
    flow equation. First, the system is set up with hundreds finite cells in one
    dimension. Then, the absorption of laser energy, the temperature, the enthalpy
    and the thermal conductivity of each cell are dynamically updated
    in each time step. Thus, the dynamical temperature profiles including the
    AgOx film temperature and other thermodynamical properties for various
    laser intensity are obtained.
    The nano-thin-film is in nanometer scale so as the finite cell Δx, but
    the thickness of glass is in millimeter. Thus, a method is developed for dynamically
    simulating the physical region depending the instant temperature
    profile. In addition, the key problem is in time domain because the time
    step is limited by Δt = 0.5Δx2 (in cgs unit) and the interaction time can
    be in a few seconds. In order to finish the simulation with present computer
    power, we take advantage of our understanding of the physical processes by
    dynamically doubling the size of each cell for increasing both the physical
    region simulated and time step size.
    The simulation results seem to be consistent with the experimental results[6].
    Under the laser power density of 30 W/cm2, the surface temperature of Ag2O
    nano-thin-film on glass can be raise to it’s decomposition temperature within
    a couple seconds. The dynamics and the relationship between required laser
    power and irradiation time for raising the surface to decomposition temperature
    are studied in detail. Also, the dynamics for the decomposition to occur
    within microsecond time scale is also investigated for the purpose of data
    storage.

    1 Introduction 2 2 Experimental background and theoretical strategy 5 2.1 Experimental background . . . . . . . . . . . . . . . . . . . . 5 2.1.1 Near-field images of the AgOx-type super-RENS . . . . 5 2.1.2 Optical transmittance study of silver particles formed by AgOx thermal decomposition . . . . . . . . . . . . . 7 2.2 Theoretical strategy for nonlinear optical transmission of AgOx and SiO2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3 Thermodynamic model 14 3.1 The dimension of this system . . . . . . . . . . . . . . . . . . 15 3.2 Laser-condensed-matter interaction . . . . . . . . . . . . . . . 15 3.3 Heat flow equation . . . . . . . . . . . . . . . . . . . . . . . . 17 3.4 Enthalpy, temperature and conductivity . . . . . . . . . . . . 18 4 Numericalmethods 20 4.1 System dimension . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.1.1 Set up the systemcells . . . . . . . . . . . . . . . . . . 20 4.1.2 Dynamic extend cells . . . . . . . . . . . . . . . . . . . 21 4.2 Absorption of laser energy in each cell . . . . . . . . . . . . . 21 4.3 Finite difference equation of thermal conduction . . . . . . . . 22 4.3.1 The equation form in general cells . . . . . . . . . . . . 22 4.3.2 The equation form in variable nodes . . . . . . . . . . 23 4.4 Dynamic double-extended nodes . . . . . . . . . . . . . . . . . 25 4.4.1 Doubling nodes . . . . . . . . . . . . . . . . . . . . . . 26 4.4.2 Update enthalpy . . . . . . . . . . . . . . . . . . . . . 27 4.4.3 Absorption after doubling . . . . . . . . . . . . . . . . 27 5 Numerical results 28 5.1 A typical case . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5.2 Experimental power . . . . . . . . . . . . . . . . . . . . . . . . 36 5.3 Optical recording applications . . . . . . . . . . . . . . . . . . 40 6 Summary 44

    [1] J. Tominaga, et al., Appl. Phys. Lett., 75, 2078 (1998).
    [2] J. Tominaga, T. Nakano and N. Atoda: Proc. SPIE 3467, 282 (1998).
    [3] J. Tominaga, H. Fuji, A. Sato, T. Nakano, T. Fukaya and N. Atoda:
    Jpn. J. Appl. Phys. 37, L1323 (1998).
    [4] T. Nakano, A. Sato, H. Fuji, J. Tominaga and N. Atoda: Appl. Phys.
    Lett. 75, 151 (1999).
    [5] T. Fukaya, J. Tominaga, T. Nakano and N. Atoda: Appl. Phys. Lett.
    75, 3114 (1999).
    [6] W. C. Liu, et al., Appl. Phys. Lett., 78, 686 (2001).
    [7] T. Shima, et al., J. Vac. Sci. Technol. A21(3), 634 (2003).
    [8] E.Hecht, Optics, (3rd Ed.), Addison-Wesley(1998).
    [9] J. Tominaga, et al., J. Phys. : Condens., Matter 15, 1106 (2003).
    [10] Y. C. Her, et al., Jpn. J. Appl. Phys., 43, 1 (2004).
    [11] CRC materials science and engineering handbook, (3rd Ed.), p5-84
    (2001).
    [12] mazurin, et al., handbook of glass data, elsevier, p55 (1991).

    下載圖示 校內:立即公開
    校外:2004-09-10公開
    QR CODE