| 研究生: |
許哲維 Hsu, Che-Wei |
|---|---|
| 論文名稱: |
以力學觀點評估於術後不同時間點傷口注射透明質酸及明膠複合物對皮膚癒合的影響 Mechanical Evaluation of the Influence of Hyaluronan and Gelatin Mixture Injections on Skin Wound Healing with Different Post Operation Time |
| 指導教授: |
葉明龍
Yeh, Ming-Long |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 醫學工程研究所 Institute of Biomedical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 58 |
| 中文關鍵詞: | 傷口癒合 、生物性材料 、拉伸強度 、明膠 、透明質酸 |
| 外文關鍵詞: | Wound Healing, Biomaterials, Tensile Strength, Hyaluronic Acid, Gelatin |
| 相關次數: | 點閱:124 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
術後加速傷口癒合且減小疤痕大小一直是學者積極努力的目標。現今已有多種物理性刺激因素與敷傷材料被研究於動物實驗或臨床對傷口癒合的影響。然而,鮮少研究是以皮膚的力學性質恢復的客觀分析方法作為傷口癒合指標並。目前,多種生物性材料已在臨床上被廣泛使用,本研究使用Sprague Dawley大鼠手術切口模型,將明膠(Gelatin)與透明質酸(HA)兩種生物性材料之複合物,於手術後不同時間點(0, 7, 0&7天組)注射於縫合的傷口,在2、4、6、8與12週分別以力學拉伸測試量測皮膚拉伸強度作為傷口癒合指標,並使用組織切片染色(H&E staining, Alcian blue staining pH2.5)分析組織癒合情況。
由力學測試結果發現,0天組在6週後期力學性質恢復能力有趨緩的現象,而7天及0&7天組有隨癒合時間而逐漸增加之趨勢,癒合後期的恢復情況亦較0天組好。由組織切片觀察顯示,0&7天組在癒合時期12週有比較小的傷口範圍,較類似於正常皮膚的真皮結構與細部排列;7天組在癒合時期12週則有比較鬆散的透明質酸分布情形及較快的真皮組織恢復。
綜合以上實驗結果發現,適當延後施打複合材料的時間,對於癒合時期後期,具有比較好的皮膚拉伸強度及恢復情形,以及比較好的真皮層內部細部組織結構。
Quick and smooth skin healing is the goal in wound healing researches. In the past, several researches had focused on a variety of physical stimulation factors and the materials of wound dressing to promote wound healing. Nowadays, a variety of natural materials are used in clinical practice, such as collagen, gelatin and hyaluronic acid (HA) etc. which are close to the composition of these artificial skin to deal with the healing processes including cell differentiation, proliferation and secretion of extracellular matrix and other mechanisms to promote wound healing. The main purpose of this study was to evaluate the effects by different post-operation injection time (0day, 7day 0&7day groups) of HA and gelatin mixture biomaterials in skin healing at rat incision model. Mechanical tensile test and histological analysis (H&E staining and Alcian blue staining) of the healing skin were conducted at the healing time at 2, 4, 6, 8, and 12 weeks after the surgery.
The results for mechanical property showed that at the late stage of healing time, the 0day group’s mechanical property was gradually slow down after 6 weeks of healing time. The 7day and 0&7day groups continued to increase the mechanical property, and had better recovery situation with the healing time up to 12 weeks compared with the 0day group. The H&E stain analysis showed that the 0&7day group had a relatively smaller wound area, and a better dermis structure and arrangement. The Alcian blue stain analysis showed that the 7day group may have a loosely hyaluronic acid distribution and faster rate for dermis regeneration at the 12 weeks of healing time. Overall, delay the time of mixture biomaterial injection after the surgery, may have a better performance in mechanical property recovery, regeneration, reconstruction, and micro-integration to dermis structure recovery at later stage of wound healing, which compared to injection the same biomaterial instantly.
1. Marieb, E.N., Essentials of Human Anatomy & Physiology. 9 ed. 2009, San Francisco: Benjamin Cummings. p.116.
2. Marieb, E.N., Essentials of Human Anatomy & Physiology. 9 ed. 2009, San Francisco: Benjamin Cummings. p.115.
3. Stadelmann, W.K., A.G. Digenis, and G.R. Tobin, Physiology and healing dynamics of chronic cutaneous wounds. American Journal of Surgery, 1998. 176(2A): p. 26s-38s.
4. Dorsett-Martin, W.A., Rat models of skin wound healing: A review. Wound Repair and Regeneration, 2004. 12(6): p. 591-599.
5. Davidson, J.M., Animal models for wound repair. Archives of Dermatological Research, 1998. 290: p. S1-S11.
6. Luther C. Kloth, J.M.M., Jeffrey A. Feedar., Wound healing: alternatives in management. 1990, Philadelphia: F.A. Davis.
7. Singer, A.J. and R.A.F. Clark, Mechanisms of disease - Cutaneous wound healing. New England Journal of Medicine, 1999. 341(10): p. 738-746.
8. Lee, S.B., et al., Bio-artificial skin composed of gelatin and (1 -> 3), (1 -> 6)-beta-glucan. Biomaterials, 2003. 24(14): p. 2503-2511.
9. Choi, Y.S., et al., Studies on gelatin-containing artificial skin: II. Preparation and characterization of cross-linked gelatin-hyaluronate sponge. Journal of Biomedical Materials Research, 1999. 48(5): p. 631-639.
10. Raija, T. and T. Markku, Hyaluronan in the Epidermis, in Hyaluronan: Synthesis, Function, Catabolism. 1998, Glycoforum: Tokyo. p. 13.
11. Toole, B.P., Hyaluronan: From extracellular glue to pericellular cue. Nature Reviews Cancer, 2004. 4(7): p. 528-539.
12. Fraser, J.R.E., T.C. Laurent, and U.B.G. Laurent, Hyaluronan: Its nature, distribution, functions and turnover. Journal of Internal Medicine, 1997. 242(1): p. 27-33.
13. Chen, W.Y.J. and G. Abatangelo, Functions of hyaluronan in wound repair. Wound Repair and Regeneration, 1999. 7(2): p. 79-89.
14. Levenson, S.M., et al., Healing of Rat Skin Wounds. Annals of Surgery, 1965. 161(2): p. 293-&.
15. Hollander, D.A., et al., Standardized qualitative evaluation of scar tissue properties in an animal wound healing model. Wound Repair and Regeneration, 2003. 11(2): p. 150-157.
16. Mesa, F.L., et al., Antiproliferative effect of topic hyaluronic acid gel. Study in gingival biopsies of patients with periodontal disease. Histology and Histopathology, 2002. 17(3): p. 747-753.
17. Greco, R.M., J.A. Iocono, and H.P. Ehrlich, Hyaluronic acid stimulates human fibroblast proliferation within a collagen matrix. Journal of Cellular Physiology, 1998. 177(3): p. 465-473.
18. Longaker, M.T., et al., Studies in Fetal Wound-Healing .5. A Prolonged Presence of Hyaluronic-Acid Characterizes Fetal Wound Fluid. Annals of Surgery, 1991. 213(4): p. 292-296.
19. West, D.C. and M. Yaqoob, Serum hyaluronan levels follow disease activity in vasculitis. Clinical Nephrology, 1997. 48(1): p. 9-15.
20. Nishida, T., et al., Hyaluronan Stimulates Corneal Epithelial Migration. Experimental Eye Research, 1991. 53(6): p. 753-758.
21. Hu, M., et al., Three-dimensional hyaluronic acid grafts promote healing and reduce scar formation in skin incision wounds. Journal of Biomedical Materials Research Part B-Applied Biomaterials, 2003. 67B(1): p. 586-592.
22. Tucci, M.G., et al., Chitosan and gelatin as engineered dressing for wound repair. Journal of Bioactive and Compatible Polymers, 2001. 16(2): p. 145-157.
23. Zhao, Y.N., et al., Tissue regeneration using macrophage migration inhibitory factor-impregnated gelatin microbeads in cutaneous wounds. American Journal of Pathology, 2005. 167(6): p. 1519-1529.
24. Miyoshi, M., et al., Effects of bFGF incorporated into a gelatin sheet on wound healing. Journal of Biomaterials Science-Polymer Edition, 2005. 16(7): p. 893-907.
25. 陳慶頤, 以力學觀點評估傷口注射膠原蛋白、透明質酸及明膠對皮膚癒合的影響. 碩士論文,國立成功大學,台南,台灣, 2010.
26. Lawrence, P.A., Developmental Biology - Compartments in Vertebrates. Nature, 1990. 344(6265): p. 382-383.
27. Morin, G., et al., Wound-Healing - Relationship of Wound Closing Tension to Tensile-Strength in Rats. Laryngoscope, 1989. 99(8): p. 783-788.
28. Muehlberger, T., et al., The effect of topical tretinoin on tissue strength and skin components in a murine incisional wound model. Journal of the American Academy of Dermatology, 2005. 52(4): p. 583-588.
29. Kadler, K., Extracellular Matrix .1. Fibril-Forming Collagens. Protein Profile, 1995. 2(5): p. 491-619.
30. Menetrey, J., et al., Growth factors improve muscle healing in vivo. Journal of Bone and Joint Surgery-British Volume, 2000. 82B(1): p. 131-137.
31. Gal, P., et al., Early changes in the tensile strength and morphology of primary sutured skin wounds in rats. Folia Biologica, 2006. 52(4): p. 109-115.