簡易檢索 / 詳目顯示

研究生: 賴季霆
Lai, Ji-Ting
論文名稱: 使用變壓器架構之3-5-GHz超寬頻接收機CMOS射頻晶片的設計研究
Research on 3-5-GHz Transformer Based CMOS RFICs For UWB Receiver Applications
指導教授: 莊惠如
Chuang, Huey-Ru
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 90
中文關鍵詞: 變壓器超寬頻
外文關鍵詞: UWB, transformer
相關次數: 點閱:58下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究應用於UWB接收機之射頻前端CMOS射頻晶片。論文共分三部份,第一部份先就變壓器做介紹,接下來是兩顆使用變壓器的射頻晶片,包括使用變壓器之3-5-GHz低電壓高隔離度吉伯特混波器、使用變壓器之3-5-GHz低電壓射頻接收機前端電路。所研製之射頻晶片均使用TSMC 0.18 μm 1P6M CMOS製程,晶片量測上除了附錄中的射頻切換開關使用on-wafer方式量測之外,其餘皆採用打鎊線至PCB測試板上進行。
    使用變壓器之3-5-GHz低電壓高隔離度吉伯特混波器是以一個變壓器隔開混波器的轉導級與開關級,達到低電壓操作與高隔離度的優點。量測結果轉換增益為0.8–4.4 dB,LO-RF隔離度為36.5–46.4 dB,LO-IF隔離度為18–23.5 dB,RF-IF隔離度為22-26.2 dB,IP1dB為-7.8–-0.8 dBm,IIP3為-10.8–-9.75 dBm。
    使用變壓器之3-5-GHz 低電壓射頻接收機前端電路是配合前一章所做的使用變壓器之混波器,設計一個射頻前端電路,其中包括低雜訊放大器,單端轉雙端的變壓器平衡器,使用變壓器之混波器。晶片應用在MB–OFDM中band group A,量測結果轉換增益在RF頻率為3.168-3.696 GHz時為4.1-9.3 dB;RF頻率為3.696-4.224 GHz時為6.6-11.8 dB;RF頻率為4.224-4.752 GHz時為7.8-10.9 dB。雜訊指數在RF頻率為3.168-3.696 GHz時為9.2-16.3 dB;RF頻率為3.696-4.224 GHz時為11.2-18.4 dB;RF頻率為4.224-4.752 GHz時為9.4-17.3 dB。IP1dB為 -18–-13 dBm,IIP3為-10.5–-5.8 dBm。

    This thesis presents the research on applications of CMOS RFICs for UWB receiver。In the first part is the introduction of transformers, next part is two transformer based RFICs. They are a transformer based low voltage high isolation 3-5-GHz Gilber-type mixer and a transformer based low voltage 3-5-GHz front end for UWB receiver, respectively. All of the RFICs is in a TSMC 0.18 μm 1P6M CMOS process. Expect the TRSW in the appendix is on-wafer measurement , the others are measured on FR4-PCB test board.
    The transformer based low voltage high isolation 3-5-GHz Gilber-type mixer used a transformer to isolated the transconductance stage and switch stage in order to achieve low voltage operation and high isolation. The chip has been measured at supply voltage of 1 V. Conversion gain is 0.8–4.4 dB, isolation of LO-RF is 36.5–46.4 dB, isolation of LO-IF is 18–23.5 dB, isolation of RF-IF is 22-26.2 dB, input P1dB is -7.8–-0.8 dBm, input IP3 is -10.8–-9.75 dBm.
    The transformer based low voltage 3-5-GHz front end for UWB receive is include the transformer-based mixer introduced previously, a transformer-based low noise amplifier and a transformer-type balun that transforms the single end output signal of low noise amplifier into differential end signal. This chip is work at MB–OFDM band group A, the measurement result show the conversion gain is 4.1-9.3 dB at 3.168-3.696 GHz, 6.6-11.8 dB at 3.696-4.224 GHz, 7.8-10.9 dB at 4.224-4.752 GHz; the noise is 9.2-16.3 dB at 3.168-3.696 GHz, 11.2-18.4 dB at 3.696-4.224 GHz, 9.4-17.3 dB at 4.224-4.752 GHz, input P1dB is -18–-13 dBm, input IP3 is -10.5–-5.8 dBm.

    第一章 緒論 1 1.1 UWB研究背景 1 1.2 UWB原理與特色 2 1.3 論文架構 5 第二章 應用於RF IC 之射頻晶片變壓器 7 2.1 被動元件與IC設計[5] 7 2.2 變壓器之原理[6] 9 2.3 變壓器之參數與架構[7] 10 2.4 變壓器之等效模型 13 2.5 變壓器特性指標 17 2.6 變壓器範例 19 2.7 變壓器設計 27 第三章 使用變壓器之低電壓高隔離度吉伯特混波器 29 3.1 混波器簡介 29 3.2 設計動機 31 3.3 應用在混波器之變壓器設計 32 3.4 使用變壓器之混波器的設計 37 3.5 模擬與量測結果 45 3.6 結果與討論 50 第四章 使用變壓器之3-5-GHz 低電壓射頻接收機前端電路 53 4.1 研究動機 53 4.2 架構簡介 54 4.3 變壓器回授之寬頻低雜訊放大器 55 4.4 寬頻變壓器式平衡器 59 4.5 使用變壓器之寬頻混波器 63 4.6 模擬結果與討論 66 第五章 結論 73 附錄A 3-10-GHz寬頻CMOS 收發切換開關 79 A.1 研究動機 79 A.2 CMOS 切換開關簡介 79 A.3 Body-Floating 架構簡介 81 A.4 3-10-GHz寬頻CMOS 收發切換開關電路設計 84 A.5 模擬與量測結果 86 A.6 結論 89

    [1] http://www.ieee802.org/15/pub/TG3a.html
    [2] http://www.ti.com.tw/articles/
    [3] http://www.stc.itri.org.tw/
    [4] B. Razavi et al. “Multiband UWB transceivers,” Proc. IEEE Custom Integrated Circuits Conference, pp. 141-148, Sept 2005.
    [5] A. M. Niknejad and R. G. Meyer, Design, Simulation and Applications of Inductors and Transformers for Si RF ICs, Kluwer Acadrmic, 2000.
    [6] 蘇炎坤,基本電工理論,大行出版社,民國六十四年。
    [7] J. R. Long, “Monolithic transformers for silicon RF IC design,” IEEE J. Solid-State Circuits, vol. 35, no. 9, pp. 1368-1382, Sept. 2000.
    [8] O. El-Gharniti, E. Kerherve, J. -B. Begueret and P. Jarry, “Modeling of integrated monolithic transformers for silicon RF IC,” IEEE ICECS, pp. 137-140, Dec. 2004.
    [9] K. T. Ng, B. Rejaei amd J. N. Burghartz, “Substrate effects in monolithic RF transformers on silicon,” IEEE Trans. Microw. Theory Tech., vol.50, no. 1, pp. 377-383, Jan. 2002.
    [10] D. C. Laney, L. E. Larson, P. Chan, J. Malinowski, D. Harame, S. Subbanna, R. Volant and M. Case, “Lateral microwave transformers and inductors implemented in a Si/SiGe HBT process,” IEEE Int. Microw. Symp. Digest, vol. 3, pp. 855-858, June. 1999.
    [11] S. Y. Yue, D. K. Ma, J. R. Long, “A 17.1-17.3-GHz image-reject downconverter with phase-tunable LO using 3 × subharmonic injection locking,” IEEE J. Solid-State Circuits, vol. 39, no. 12, pp. 2321–2332, Dec. 2004.
    [12] W. Zhuo, X. Li, S. Shekhar, S. H. K. Embabi, J. P. de Gyvez, D. J. Allstot, E. S. Sinencio, “A capacitor cross-coupled common-gate low-noise amplifier,” IEEE TCSII, vol. 52, no. 12, pp. 875-879, Dec. 2005.
    [13] 鐘豪文,超寬頻UWB無線射頻收發機之寬頻CMOS RFICs的設計研究,國立成功大學電機工程研究所碩士論文,民國九十四年。
    [14] T. -Yu. Yang, H. -L. Tu and H. -K. Chiou, “Low-voltage High-linear and Isolation Transformer Based Mixer for Direct Conversion Receiver,” IEEE ISCAS, pp. 3754-3757, May 2006.
    [15] M. Tiebout and T. Liebermann, “A 1V fully integrated CMOS transformer based mixer with 5.5 dB gain, 14.5 dB SSB noise figure and 0 dBm input IP3,” in Proc. European Solid-State Circuits Conf., pp. 577-580, Sept. 2003.

    [16] C. Hermann, M. Tiebout and H. Klar, “A 0.6-V 1.6-mW transformer-based 2.5 GHz downconversion mixer with +5.4 dB gain and -2.8 dBm IIP3 in 0.13 μm CMOS,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 2, pp. 488-495, Feb. 2005.
    [17] M. Y. Bohsali and A. M. Niknejad, “Microwave performance of monolithic silicon passive transformers,” in IEEE Radio Frequency Integrated Circuits Symp. pp. 647-650, June. 2004.
    [18] M. T. Reiha, J. R. Long, J. J. Pekarik, “A 1.2 V reactive-feedback 3.1-10.6 GHz ultrawideband low-noise amplifier in 0.13 μm CMOS,” in Radio Frequency Integrated Circuits (RFIC) Symp., June 2006.
    [19] H. -K. Chen, J. R. Sha, S. -H. Lee, D. -C. Chang, Y. -Z. Juang, C. -F. Chin, “A novel LNA-mixer design with on-chip balun,” IEEE ISCAS, May 2006.
    [20] F. J. Huang and O. Kenneth, “A 0.5 μm CMOS T/R Switch for 900-MHz Wireless Applications,” IEEE J. of Solid-state circuits, vol. 36, no. 3, Mar. 2001.
    [21] M. -C. Yeh, Z. -M. Tsai, R. -C. Liu, K. -Y. Lin, Y. -T. Chang and H. Wang, “Design and analysis for a miniature CMOS SPDT switch using body-floating technique to improve power performance,” IEEE Transaction on microwave theory and techniques, vol. 54, no. 1, Jan. 2006.
    [22] Z. Li and K. O. Kenneth, “15-GHz fully integrated nMOS switches in a 0.13 μm CMOS process,” IEEE J. Solid-State Circuits, vol. 40, pp. 2323-2328, Nov. 2005.
    [23] Y. Jin and C. Nguyen, “A 0.25-mm CMOS T/R switch for UWB wireless communications,” IEEE Microwave Wireless Compon. Lett., vol. 15, pp. 502-504, Aug. 2005.
    [24] K. -Y. Lin, W. -H. Tu, P. -Y. Chen, H. -Y. Chang, H. Wang, R. -B. Wu, “Millimeter-wave MMIC passive HEMT switches using traveling-wave concept,” IEEE Trans. Microwave Theory Tech., vol 52 , no. 8, pp. 1798-1808, Aug. 2004.

    [25] Mei-Chao Yeh, Ren-Chieh Liu, Zuo-Min Tsai and Huei Wang, “A miniature low-insertion-loss, high-power CMOS SPDT switch using floating-body technique for 2.4- and 5.8-GHz applications” in Radio Frequency Integrated Circuits (RFIC) Symp., pp. 451-454, Jun. 2005.
    [26] O. El-Gharniti, E. Kerherve, J. -B. Begueret, “Systematic design methodology for on-chip transformers with patterned ground shield, ” in Radio Frequency Integrated Circuits (RFIC) Symp., Jun. 2006.
    [27] L. -P. Wong, C. Snyder, T. Manku, S. Kovacic, “An integrated capacitively coupled transformer and its application for RF IC’s,” in Proc. IEEE Custom Integrated Circuits Conf. (CICC), pp. 349-352, May 2000.
    [28] D. J. Cassan, J. R. Long, “A 1-V transformer-feedback low-noise amplifier for 5-GHz wireless LAN in 0.18 μm CMOS,” IEEE J. Solid-State circuits, vol. 38, no. 3, pp. 427-435, Mar. 2003.
    [29] H. -M. Hsu, M. -M. Hsieh, C.-W. Tseng, K.-H. Huang, “High coupling transformer in CMOS technology,” in Radio Frequency Integrated Circuits (RFIC) Symp., Jun. 2006.
    [30] H. Gan, S. S. Wong, “Integrated transformer baluns for RF low noise and power amplifiers,” in Radio Frequency Integrated Circuits (RFIC) Symp., Jun. 2006.
    [31] M. Y. Bohsali and A. M. Niknejad, “Microwave performance of monolithic silicon passive transformers,” in Radio Frequency Integrated Circuits (RFIC) Symp., pp. 647-650, Jun. 2004.

    下載圖示 校內:2008-09-10公開
    校外:2008-09-10公開
    QR CODE