簡易檢索 / 詳目顯示

研究生: 蔡鈞瑋
Tsai, Jun-Wei
論文名稱: 等速移動荷重引致地表反應之數值初步計算
Preliminary Numerical Computation of Surface Response Induced by a Steadily Moving Point Load
指導教授: 宋見春
Sung, J.-C.
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 72
中文關鍵詞: 穩態移動荷重異向性材料有限元素法隱式分析顯式分析剪力鎖
外文關鍵詞: steady-state moving load, anisotropic materials, FEM, implicit analysis, explicit analysis, shear lock
相關次數: 點閱:75下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文探討移動荷重作用於半無窮域表面的垂直變位,以有限元素法分析之。文中先以ABAQUS軟體分析靜態荷重,研究有限元素法之邊界及網格對於靜態反應的影響;其次利用Micro-SAP軟體分析等速移動荷重下的問題,數值算例分析正交異向性材料的地表反應,結果與移動荷重的解析解(Liou與Sung, 2008)作比較。
    (註:Micro-SAP為朱聖浩教授所撰寫的一套有限元素分析軟體)

    The displacement field on the surface of half-plane solid under constant moving loads analyzed by FEM. The ABAQUS software is utilized first to investigate the static response to see the effects of the infinite boundary and the mesh size used. Then, to analyze the problem of moving load, the Micro-SAP software is adopted. Numerical results of orthotropic materials are compared with the analytical solutions developed by Liou and Sung (2008).

    摘要 (I) Abstract (IV) 目錄 (VI) 圖目錄 (VIII) 表目錄 (XI) 第一章 緒論 (1) 1-1 研究動機與文獻回顧 (1) 1-2 研究方法 (3) 1-3 本文綱要 (4) 第二章 基本公式 (5) 2-1 Stroh公式 (5) 2-2 A及B矩陣的建立 (7) 第三章 表面反應求得 (13) 3-1 移動點荷重下異向性材料的表面位移 (13) 3-2 正交異向性材料 (19) 3-3 等向性材料 (20) 第四章 有限元素分析 (22) 4-1 元素法的基本原理 (Rayleigh–Ritz方法) (22) 4-2 兩種有限元素程式的分析模式-隱式及顯式 (23) 4-3 有限元素模型的建立 (31) 第五章 結果及討論 (34) 5-1 檢驗的基準問題 (34) 5-2 檢驗ABAQUS網格種類的影響 (35) 5-3 區域大小的影響 (48) 5-4 移動點荷重下的變位比較 (53) 第六章 結論 (62) 參考文獻 (63) 附錄A ξ(p_k), β(p_k), η(p_k), ζ(p_k), (k=1,2,3) 的顯示 (65) 附錄B L(v)、S(v)及H(v)的顯示 (70)

    Andersen Lars, Nielsen Søren R.K.,2002, Boundary element analysis of the steady-state response of an elastic half-space to a moving force on its surface,Engineering Analysis with Boundry Elements 27, pp 23–38.
    Bakker M., Verweij M., Kooij B. and Dieterman H.,1999, The travelling point load revisited, Wave Motion 29, pp. 119–135.
    Barber J. R., 1996, Surface displacement due to a steady moving point force, ASME Journal of Applied Mechanics 63, 245-251.
    Bierer T.,Bode C., 2007, A semi-analytical model in time domain for moving loads, Solid Dynamics and Earthquake Engineering 27 (2007) 1073-1081.
    Cole J., Huth J., 1958, Stresses produced in a half plane by moving loads, ASME Journal of Applied Mechanics 25, 433-436.
    Eason G., 1965, The stresses produced in a semi-infinite solid by a moving surface force, Journal of Engineering Science, Vol.2, No.6, pp.581-609.
    Eringen A.C., Suhubi E.S., 1975, Elastodynamics, Volume II: Linear Theory, Academic Press, New York.
    Gakenheimer D. and Miklowitz J.,1969, Transient excitation of an elastic half space by a point load traveling on the surface, Journal of Applied Mechanics, ASME, Volume 36, pp. 505-515.
    Georgiadis H.G., Barber J.R., 1993, Steady state transonic motion of a line load over an elastic half space (the corrected Cole/Huth solution), ASME Journal of Applied Mechanics 60, 772-774.
    Georgiadis H.G., Lykotrafitis G., 2001, A method based on the Radon transform for three- dimension elastodynamic problem of moving loads, Journal of Elasticity 65, 87-129.
    Lansing D., 1966, The displacements in an elastic half-space due to a moving concentrated normal load, NA SA: Langley.,TR R-238.
    Liou J.Y., Sung J.C., 2007, Explicit expressions of S(v), H(v) and L(v) for aniso tropic elastic materials, International Journal of Solids and Structure 44, pp 8407- 8423.
    Liou J.Y., Sung J.C., 2008, Surface responses induced by point load or uniform traction moving steadily on an anisotropic half-plane, International Journal of Solids and Structure 45, pp 2737-2757.
    Papadopoulos M., 1963, The elastodynamics of moving loads, Part 1: The field of a semi-infinite line load moving on the surface of an elasic solid with constant supersonic velocity, Journal of the Australian Mathematical Society, Volume 3, Issue 01, pp 79-92.
    Rahman M., 2001, Fourier-transform solution to the problem of steady-state transonic motion of a line load across the surface of an elastic half-space (the corrected Cole-Huth solution), Applied Mathematics Letters 14(4) 437-441, appml, 15(1):129.
    Sneddon I. N., 1952, Stress Produced by a Pulse of Pressure Moving along the Surface of Semi-infinite Solid, Rend. Circ. Mat. Palermo Vol. 2, pp. 57-62.
    Temoshenko S. P., Goodier J. N., 1970, Theory of Elasticity- 3rd Edition, McGraw- Hill Book Company.
    Thomas C.T. Ting, 1996, Anisotropic Elasticity - Theory and Applications, Oxford Science Pub.
    宋裕祺, 蘇進國, 張荻薇, 2007, 有限元素法在鋼斜張橋結構分析之應用, 中日「鋼結構工程」研討會, 台南, 台灣.
    愛發公司, 2005, ABAQUS 實務入門引導, 全華科技圖書公司.

    下載圖示 校內:2011-08-26公開
    校外:2012-08-26公開
    QR CODE