簡易檢索 / 詳目顯示

研究生: 張伊瑩
Chang, I-Ying
論文名稱: 使用溶液燃燒合成之TiO2奈米粉體製做染料敏化太陽能電池之光電極及電池性能研究
Fabrication of Photo-electrode for Dye-Sensitized Solar Cell using Solution Combustion Synthesized TiO2 Nano Powder and Performance of the Cell
指導教授: 鍾賢龍
Chung, Shyan-Lung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 111
中文關鍵詞: 溶液燃燒合成法二氧化鈦染料敏化太陽能電池
外文關鍵詞: Solution combustion synthesis method, TiO2, DSSC
相關次數: 點閱:82下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 溶液燃燒合成法的優點為製程簡單、合成快速、製備成本低。本研究利用溶液燃燒合成法製備二氧化鈦奈米粉體,使用硝酸銨作為燃燒反應之氧化劑、甘胺酸作為燃燒反應之還原劑,經由燃燒反應所釋放的熱量合成二氧化鈦奈米粉體。不同的氧化劑/還原劑之莫耳比,會造成燃燒反應溫度的不同,而粉體的比表面積、孔隙度、晶相、晶粒大小與能隙等性質、與燃燒反應溫度有相當大的關聯。將所合成之粉體應用到染料敏化太陽能電池之光電極,探討其粉體性質對光電效率表現之影響。研究發現當氧化劑/還原劑之莫耳比為1.4時有最佳電池輸出表現,其電池效率為3.61%,電流密度為9.4 mA/cm2,開環電壓為0.71 V,填充因子為0.57。

    The solution combustion synthesis method is an easy, rapid and low-cost process to prepare the TiO2 nanocrystalline powder. We use NH4NO3 as the oxidizer and glycine as the reducing agent to synthesize TiO2 particles by solution combustion synthesis method. The morphology, specific surface area, porosity, crystalline phase, crystalline size and band gap of TiO2 were found to be strongly affected by combustion temperature and different combustion temperatures were caused by the different mole ratio of oxidizer/ reducing agent, Ψ. Furthermore, thus synthesized TiO2 were used to fabricate the photo-electrode of dye-sensitized solar cells which were then analyzed for their photovoltage performance. We found that the photoelectric conversion efficiency was strongly dependent on the type of TiO2. DSSC fabricated with the TiO2 synthesized at oxidizer/ reducing agent molar ratio is equal to 1.4 has the highest efficiency of 3.61% with Voc = 0.71V, Isc = 9.4 mA/cm2 and F.F. = 0.57.

    摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VIII 圖目錄 IX 第一章 緒論 1 1.1前言 1 1.2太陽能電池的種類 2 1.3 研究動機 5 第二章 基礎理論與文獻回顧 6 2.1 二氧化鈦的介紹 6 2.2 二氧化鈦合成方法 9 2.2.1 溶膠凝膠法 10 2.2.2 熱水解法 12 2.2.3 水熱法 12 2.2.4 微乳膠法 13 2.2.5 溶液燃燒合成法 14 2.3 DSSC之結構與工作原理 18 2.3.1 DSSC之工作電極 23 2.3.2 DSSC之染料 24 2.3.3 DSSC之電解質 28 2.3.4 DSSC之對電極 30 第三章 實驗內容及方法 31 3.1 實驗藥品 31 3.2 實驗設備及分析儀器 32 3.3 實驗內容 34 3.3.1 實驗流程圖 35 3.3.2 實驗分析流程圖 36 3.3.3 粉體及其漿料製備方式 37 3.3.3.1 溶液燃燒合成二氧化鈦奈米粉體及其漿料 37 3.3.3.2 高溫熱處理二氧化鈦奈米粉體及其漿料 39 3.3.3.3 商用degussa P-25二氧化鈦奈米粉體及其漿料 39 3.3.4 染料敏化太陽能電池製備方式 40 3.3.4.1 二氧化鈦光電極之製備 41 3.3.4.2 光電極染料吸附 41 3.3.4.3 對電極之製備 41 3.3.4.4 電解液之製備 42 3.3.4.5 電池之組裝 42 3.3.5 儀器分析原理與測試方法 43 3.3.5.1 熱性質的測試(TGA) 43 3.3.5.2 光繞射分析(XRD) 43 3.3.5.3 氮氣吸附法測比表面積(BET) 44 3.3.5.4 掃描式電子顯微鏡(SEM) 45 3.3.5.5 穿透式電子顯微鏡(TEM) 45 3.3.5.6 紫外光/可見光光譜儀(UV-Vis Spectrometer) 46 3.3.5.7 化學分析電子光譜儀(ESCA) 47 3.3.5.8 電池性能測試(IV Curve) 48 第四章 結果與討論 50 4.1 燃燒反應 50 4.1.1 引燃熱源之溫度設定 50 4.1.2 氧化劑與還原劑 50 4.1.3 燃燒前驅物 51 4.1.4 燃燒現象之觀察 53 4.2 二氧化鈦粉體的分析 57 4.2.1 二氧化鈦粉體之BET分析 57 4.2.2 二氧化鈦粉體之XRD分析 58 4.2.3 二氧化鈦粉體之顯微分析 63 4.2.4 二氧化鈦粉體之TEM分析 70 4.2.5 二氧化鈦粉體之ESCA分析 73 4.2.6 二氧化鈦粉體之吸收光譜分析 76 4.2.7 結論 79 4.3 染料敏化太陽能電池特性分析 80 4.3.1 二氧化鈦光電極之BET分析 80 4.3.2 二氧化鈦光電極之XRD分析 82 4.3.3 二氧化鈦光電極之ESCA分析 83 4.3.4 二氧化鈦光電極之吸收光譜分析 89 4.3.5 二氧化鈦光電極之顯微分析 93 4.3.6 二氧化鈦光電極之染料吸附量分析 95 4.3.7 染料敏化電池之表現 98 4.3.8 結論與未來改進方向 105 第五章 參考文獻 108

    1. M. Grätzel, Nature, 403,363 (2000).
    2. M. A. Green et al., Prog. Photovolt:Res.Appl., 61-67(2008).
    3. B. O’Regan, M. Grätzel, Nature, 353, 737 (1991).
    4. M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Müller, P. Liska, N. Vlachopoulos, M. Grätzel, J. Am. Chem. Soc., 115, 6382 (1993)
    5. M. K. Nazeeruddin, P. Pechy, T. Renouard, S. M. Zakeerudin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, M. Grätzel, J. Am. Chem. Soc., 123, 1613 (2001).
    6. C. J. Barbe, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, M. Grätzel, J. Am. Ceram. Soc., 80, 3157 (1997)
    7. K. Hara, Y. Tachibana, Y. Ohga, A. Shinpo, S. Suga, K. Sayama, H. Sugihara, H. Arakawa, Sol. Energy Mater. Sol. Cells, 77, 89 (2003)
    8. T. Horiuchi, H. Miura, S. Uchida, Chem. Commun., 3036 (2003).
    9. N. Papageorgiou, Y. Athanassov, M. Armand, P. Bonhote, H. Pettersson, A. Azam, M. Grätzel, J. Electrochem. Soc., 143, 3099 (1996)
    10. B. O’Regan, D. T. Schwartz, Chem. Mater., 10, 1501 (1998)
    11. U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissortel, J. Salbeck, H. Spreitzer, M. Grätzel, Nature, 395, 583 (1998)
    12. P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin, T. Sekiguchi, M. Grätzel, Nature materials, 2, 402 (2003)
    13. C. Longo, A. F. Nogueira, M.-A. D. Paoli, J. Phys. Chem. B, 106, 5925 (2002)
    14. A. Kay, M. Grätzel, Sol. Energy Mater. Sol. Cells, 44, 99 (1996)
    15. N. J. Cherepy, G. P. Smestad, M. Grätzel, J. Z. Zhang, J. Phys. Chem. B, 101, 9342 (1997)
    16. D. Cahen, G. Hodes, M. Grätzel, J. F. Guillemoles, I. Riess, J. Phys. Chem. B, 104, 2053 (2000)
    17. K. Honda, and A. Fujishima, Nature, 37, 238 (1972)
    18. A. Fujishima, T. N. Rao, D. A. Tryk, J. Photochemistry and Photobiology C: Photochemistry Reviews 1, 1 (2000)
    19. U. Diebold, Surf Sci Rep., 48,53(2003)
    20. O. K. Varghese, D. W. Gong, M. Paulose, K. G. Ong, C. A Grimes, Sens Actuator B-Chem., 93, 338 (2003)

    21. J. C. Yu ,W. K. Ho, J. Lin, K. Y. Yip, P. K. Wong, Environ Sci Technol., 37, 2296 (2003)
    22. G. K. Mor, M. A. Carvalho, O. K. Varghese, M. V. Pishko, C. A. Grimes, J Mater Res., 19, 628 (2003)
    23. P. Zeman, S. Takabayashi, J Vac Sci Technol A-Vac SurfFilms, 20, 388 (2002)
    24. H. Zhang, JF. Banfield, J. Phys. Chem. B, 104, 3481-3487 (2000)
    25. A. L. Linsebigler, Chem. Rev., 95, 735-758 (1995)
    26. J. Augustynski, Electrochimica acta, 38, 43-46 (1993)
    27. N.G. Park, J. van de Lagemaat, A. J. Frank, J. Phys. Chem. B ,104, 8989-8994 (2000)
    28. C. Jeffrey Brinker and George W. Scherer, Sol Gel Science, Academic Press (1990)
    29. M. A. Aegerter, Sol-gel: science and technology, NewJersey, World Scientific (1989)
    30. D. M. Mattox, Thin Solid Films, 204, 25 (1991)
    31. B. E. Yoldas, J. Mater. Sci., 21,1087-1092 (1986)
    32. K. Terabe, K. Kato, H. Miyazaki, S. Yamaguchi, A. Imai and Y. Iguchi, J. Mater. Sci., 29, 1617 (1984)
    33. F. Cot, A. Larbot, G. Nabias ,L. Cot, J. Eur. Cream. Soc., 18, 2175 (1998)
    34. H. K. Park, D. K. Kim, and C. H. Kim, J. Am. Chem. Soc.,80 , 743-749 (1997)
    35. H. K. Park, Y. T. Noon, D. K. Kim and C. H. Kim, J. Am. Chem. Soc., 79, 2727-2734 (1996)
    36. Y. Wei, R. Wu, Y. Zhang, Mater. Lett., 41, 101-103(1999)
    37. W. J. Dawson, Cream. Bull., 67, 1673-1678 (1988)
    38. J. Yang, S. Mei, M. F. Rerreira, J. Am. Chem. Soc., 83, 1361-1368 (2000)
    39. M. Inagaki, Y. Nakazawa, M. Hirano, Y. Kobayashi , M. Toyoda, Inter. J. Inorg. Mater., 3, 809-811 (2001)
    40. H. Cheng, J. Ma, Z. Zhao and L. Qi, Chem. Mater. , 7, 663 (1995)
    41. D. J. Shaw, Introduction to colloid and surface chemistry, 4th edition,
    Butterworths (1997)
    42. E. J. Kim, S. H. Oh, S. H. Hahn, Chem. Eng. Communications, 187, 171-184 (2001)
    43. R. B. Zhang, L. Gao, Mater. Res. Bull., 37, 1659-1666 (2002)
    44. E. J. Kim, S. H. Hahn, Mater. Sci. Eng. A, 303, 24-29 (2001)
    45. J. Fang, J. Wang, Materials Letters, 36, 179 (1998)
    46. A. S. Mukasyan, P. Epstein, P. Dinka, Proceedings of the Combustion Institute, 31, 1789–1795 (2007)
    47. S. L. Chung, C.M. Wang, J Sol-Gel Sci Technol, 57,76–85 (2011)
    48. L. A. Chick, L. R. Pederson, Materials Letters, 10, 6 (1990)
    49. A. S. Mukasyan, C. Costello, Purification Technology, 25, 117 (2001)
    50. McKittrick, L. E. Bacalski, Display, 19, 169 (1999)
    51. R. D. Purohit, S. Saha, Journal of Nuclear Materials, 288, 7 (2001)
    52. R. D. Purohit, B. P. Sharma, Materials Research Bulletin, 36, 2711 (2001)
    53. Y. Zhenxing, Journal of Maganetism and Materials, 208, 55 (2000)
    54. G. P. Smestad, M. Grätzel, J. Chem. Educ., 75, 752, (1998)
    55. M. Gratzel, Nature, 414, 338-344 (2001)
    56. D. Matthews, P. Infelta, M. Grätzel, Sol. Energy Mater. Sol. Cells, 44, 119 (1996)
    57. A. N.M.Green,E.Palomares, J.Phys.Chem.B., 109, 12525-12533 (2005)
    58. M. Grätzel, Inorg. Chem., 44, 6841 (2005)
    59. M. Grätzel, Current Opinion in Colloid & Interface Science, 4, 314-321, (1999)
    60. K. Kalyanasundaram , M. Grätzel, Coord. Chem. Rev., 77, 347-414 (1998)
    61. A. Fujishima et al., Sol. Energy Mater. Sol. Cells, 81, 197-203 (2004)
    62. G. Franco, J. Gehring, L. M. Peter, E.A. Ponomarev, I. Uhlendorf, J. Phys. Chem. B, 103, 692 (1999)
    63. A. Hagfeldt, M. Grätzel, Chem. Rev., 95, 49 (1995)
    64. Y. Diamant, S. G. Chen, O. Melamed, A. Zaban, J. Phys. Chem. B, 107, 1977 (2003)
    65. J.H. Yum, S. Nakade, D.Y. Kim, S. Yanagida,“ J. Phys. Chem. B, 110, 3215-3219 (2006)
    66. T. Ma, M. Akiyama, E. Abe, I. Imai, Nano Lett., 12, 2543-2547 (2005)
    67. Q. Li, W.Liang, J.K.Shang, Appl. Phys. Lett ., 90, 063109 (2007)
    68. Y.H. Su, W.H. Lai, L.G. Teoh, M.H. Hon, J.L. Huang, Appl. Phys. A, 88, 173-178 (2007)
    69. 劉茂煌, 工業材料, 203, 91-97 (2003)
    70. D. Cahen, G. Hodes, M. Grätzel, J. F. Guillemoles, J. Phys. Chem. B, 104, 2053 (2000)
    71. G. J. Meyer, J. Chem. Educ., 74, 652 (1997).
    72. M. Grätzel Lab, J. Am. Chem. Soc, J. Am. Chem. Soc, 127,16835-16847 (2005)
    73. G. Wolfbauer, A. Bond, J. C. Eklund, D. R. MacFarlane, Solar Energy Mater. & Solar Cells, 70, 85 (2001)
    74. N. Kopidakis, K. D. Benkstein, J. Lagemaat, A. J. Frank, J. Phys. Chem. B, 107, 11307 (2003)
    75. D. Kuang, C. Klein, H. J. Snaith, J. Moser, R. Humphry-Baker, P. Comte, S. M. Zakeeruddin and M. Grätzel, Nano Lett., 6, 669 (2006)
    76. S. A. Haque, E. Palomares, B. M. Cho, A. N. M. Green, N. Hirata, D. R. Klug, J. R. Durrant, J. Am. Chem. Soc., 127, 3456 (2005)
    77. J. M. Pringle, J. Golding, C. M. Forsyth, G. B. Deacon, M. Forsyth, D. R. MacFarlane, J. Mater. Chem., 12, 3475 (2002)
    78. P. Wang, S. M. Zakeeruddin, J. E. Moster, M. Gratzel, J. Phys. Chem. B, 107, 13280 (2003)
    79. C. P. Fredlake, J. M. Crosthwaite, D. G. Hert, S. N. V. K. Aki, J. F. Brennecke, J. Chem. Eng. Data, 49,954 (2004)
    80. P. Wang, S. M. Zakeeruddin, R. H. Baker, M. Gratzel, Chem. Mater., 16, 2684 (2004)
    81. M. Zistler, C. Schreiner, P. Wasserscheid, D. Gerhard, H. J. Gores, Int. J. Electrochem. Sci., 3, 236 (2008)
    82. P. Wang, S. M. Zakeeruddin, J. E. Moster, R. H. Baker, M. Gratzel, J. Am. Chem. Soc., 126, 7164 (2004)
    83. D. Gerhard, S. C. Alpaslan, H. J. Gores, M. Uerdingen, P. Wasserscheid, Chem. Commun., 5080 (2005)
    84. D. Kuang, P. Wang, S, Ito, S. M. Zakeeruddin, M. Gratzel, J. Am. Chem. Soc., 128, 7732 (2006)
    85. C. Capiglia, Y. Saito, H. Kataoka, T. Kodama, E. Quartarone, P. Mustarelli, Solid State Ionics, 131,291 (2000)
    86. T. Stergiopoulos, L. M. Arabatzis, G. Katsaros, Nano Lett., 2, 1259 (2002)
    87. Y. L. Lee, Y. J. Shen, Y. M. Yang, Nanotechnology, 19, 455201 (2008)
    88. F. A. Deorsola, D. Vallauri, J. Mater. Sci., 43, 3274 (2008)
    89. R. D. Shannon, J. A. Pask, J. Am. Ceram. Soc., 48, 391 (1965)
    90. C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder, G. E. Muilenberg, Handbook of x-ray photoelectron spectroscopy. Perkin-Elmer Corporation, Eden Prairie, MN (1979)
    91. B. Erdem, R. A. Hunsicker, G. W. Simmons, E. D. Sudol, V. L. Dimonie, El-Aasser MS, Langmuir, 17, 2664 (2001)
    92. D. M. Chen, Z. Y. Jiang, J. Q. Geng, Q. Wang, D. Yang, Ind. Eng. Chem. Res., 46, 2741 (2007)
    93. Y. Xie, X. Zhao, Y. Chen, Q. Zhao, Q. Yuan, J. Solid State Chem., 180, 3576 (2007)
    94. C. S. Gopinath, S. G. Hegde, A. V. Ramaswamy, S. Mahapatra, Mater. Res. Bull., 37, 1323 (2002)
    95. M. M. Rahman, K. M. Krishna, T. Soga, T. Jimbo, M. Umeno, J. Phys. Chem. Solids., 60, 201 (1999)
    96. J. G. Yu, H. G.Yu, B. Cheng, X. J. Zhao, J. C. Yu, W. K. Ho, J. Phys. Chem. B, 107, 13871 (2003)

    下載圖示 校內:2016-08-09公開
    校外:2016-08-09公開
    QR CODE