簡易檢索 / 詳目顯示

研究生: 張禎
Chang, Chen
論文名稱: 探討 RGD loop 在 Echistatin 中對於辨識整合蛋白所扮演的角色
The role of the RGD loop of Echistatin in the recognition of integrins
指導教授: 莊偉哲
Chuang, Woei-Jer
學位類別: 碩士
Master
系所名稱: 醫學院 - 生物化學暨分子生物學研究所
Department of Biochemistry and Molecular Biology
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 102
中文關鍵詞: 整合蛋白去整合蛋白鋸鱗蝰素RGD 迴圈抗癌藥物
外文關鍵詞: integrin, disintegrin, echistatin, RGD loop, anticancer drug
相關次數: 點閱:154下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 整合蛋白是 αβ 異二聚體受體,可以介導細胞與細胞和細胞外基質 (ECM) 的相互作用,並參與細胞粘附、遷移和信號轉導。去整合素是強效的整合蛋白抑製劑,可阻斷整合蛋白與ECM的相互作用,從而達到抑制腫瘤生長的作用。 Rhodostomin (Rho) 和 Echistatin (Ech) 是具有不同 RGD 環序列的去整合素,Rho是PRGDMP ,而Ech是ARGDDM,以及不同的雙硫鍵模式。在我們之前的研究中,我們發現與 RGD環相鄰的殘基會影響Rho和整合蛋白結合的特異性和親和力。例如,ARGDNP 和 ARGDWP 突變體對整合素α5β1表現出高親和力。此外,Echistatin對αvβ3, α5β1, and αIIbβ3整合素受體表現出優異的抑制活性,同時它是一種短鏈解整合素。因此,我們進一步研究與Ech的 RGD環相鄰的C端末端殘基在其與整合蛋白結合的特異性和親和力中的作用。本研究成功在畢赤酵母中表達了13個Ech突變體,純化後的產量為0.5-6.5 mg/L。細胞黏著抑制分析結果表明,Ech 27NM, 27NK, 27NP, 27WP, 27WN, 27DF, 27DA, 27DE, 27DK, 30DR, 21ARGRGDNP, 21RIARGDNP和21RIARGDDM突變體與Ech-WT相比,對整合蛋白α5β1的抑制活性降低了1.4-6003.1倍,對整合素αvβ3的抑制活性降低了4.3-3759.6倍,和對整合蛋白αIIbβ3有3.5-876.6倍的抑制活性下降。然而,與Ech-WT相比,Ech 27WN在抑制血小板聚集方面表現出1.4倍的增加。這些結果與過去我們在Rho的發現不一致,這表明Ech和Rho可能使用不同的區域與整合蛋白相互作用。 而Ech和Rho的功能差異可以為設計整合素特異性拮抗劑提供分子基礎。

    Integrins are αβ heterodimeric receptors that mediate cell to cell and extracellular matrix (ECM) interactions and involve in cellular adhesion, migration, and signal transduction. Disintegrins are potent integrin inhibitors, which block the interactions between integrin and ECM, thereby achieving the effect of inhibiting tumor growth. Rhodostomin (Rho) and echistatin (Ech) are disintegrins with different RGD loop sequences, PRGDMP in Rho and ARGDDM in Ech, and disulfide bond patterns. In our previous study we found that the residues adjacent to the RGD motif affect Rho’s integrins binding specificities and affinities. For example, the ARGDNP and ARGDWP mutants exhibit high affinity to integrin α5β1. Furthermore, Echistatin has been found to exhibit excellent inhibitory activity against the αvβ3, α5β1, and αIIbβ3 integrin receptors, and it is a short-chain disintegrin. We therefore propose to study the role of C-terminal residues adjacent to the RGD motif of Ech in its integrins binding specificities and affinities. In this study I have successfully expressed thirteen Ech mutants in Pichia pastoris, and the yields after purification were 0.5-6.5 mg/L. The results of cell adhesion analysis showed that Ech 27NM, 27NK, 27NP, 27WP, 27WN, 27DF, 27DA, 27DE, 27DK, 30DR, 21ARGRGDNP, 21RIARGDNP and 21RIARGDDM mutants exhibited 1.4-6003.1-fold decrease in inhibiting integrin α5β1, 4.3-3759.6-fold decrease in inhibiting integrin αvβ3 and 3.5-876.6-fold decrease in inhibiting integrin αIIbβ3 in comparison with those of Ech. Nevertheless, Ech 27WN exhibited 1.4-fold increases in inhibiting platelet aggregation in comparison of that of Ech. These results were not consistent with the findings from Rho, it suggested that Ech and Rho may use different regions to interact with integrins. The functional differences of Ech and Rho can provide molecular basis to design integrin-specific antagonist.

    中文摘要 I ABSTRACT II ACKNOWLEDGEMENT III TABLE OF CONTENTS IV LIST OF TABLES VIII LIST OF FIGURES IX LIST OF APPENDICES X ABBREVIATIONS XII CHAPTER I INTRODUCTION 1 1.1 Background information 1 1.2 Integrins 2 1.2.1 Integrin structure 2 1.2.2 RGD-binding integrins 3 1.2.3 Integrin activation 4 1.2.4 Integrin antagonists as therapeutic agents 5 1.3 Disintegrins 6 1.3.1 Rhodostomin (Rho) 7 1.3.2 Echistatin (Ech) 8 CHAPTER II RATIONALE AND SPECIFIC AIMS 10 CHAPTER III MATERIALS AND METHODS 12 3.1 Materials 12 3.2 Construction of Ech mutants 12 3.3 Protein expression of Ech mutants 13 3.3.1 Pichia pastoris expression system 13 3.3.2 Small-scale protein expression of Ech mutants 14 3.3.3 Large-scale protein expression of Ech mutants 15 3.4 Protein purification of Ech mutants 16 3.4.1 Capto MMC chromatography of Ech mutants 16 3.4.2 Reverse-phase high performance liquid chromatography of Ech mutants 16 3.4.3 Mass spectrometric measurement of Ech mutants 17 3.5 Protein purification of fibronectin 18 3.6 Cell cultures 20 3.7 Cell adhesion assay 20 3.7.1 α5β1 Cell adhesion assay 21 3.7.2 αvβ3 and αIIbβ3 Cell adhesion assay 22 3.8 Platelet aggregation assay 23 CHAPTER IV RESULTS 26 4.1 Expression, purification and mass characterization of echistatin mutants 26 4.2 The effects of Ech mutants on the inhibition of cell-expression integrins αvβ3, α5β1, and αIIbβ3 and platelet aggregation 27 4.2.1 The effects of Ech mutants on the inhibition of cell-expression integrins αvβ3, α5β1 and αIIbβ3 28 4.2.2 The effects of Ech mutants on the inhibition of platelet aggregation 28 4.3 The effects of N28X mutants on the inhibition of cell-expressing integrins αvβ3, α5β1, and αIIbβ3 and platelet aggregation 29 4.4 The effects of W28X mutants on the inhibition of cell-expressing integrins αvβ3, α5β1, and αIIbβ3 and platelet aggregation 29 4.5 The effect of 21RI mutants on the inhibition of cell-expressing integrins αvβ3, α5β1, and αIIbβ3 30 4.6 The effect of D28X mutants on the inhibition of cell-expressing integrins αvβ3 and α5β1 30 4.7 Summarizing Ech mutants with specificity on the inhibition of cell-expressing integrins and platelet aggregation 31 CHAPTER V DISCUSSION 33 5.1 The effect of Ech mutants on the inhibition of integrins in comparison with those of Rho mutants 33 5.1.1 The effect of Ech-21KRARGDNP on the inhibition of integrins and platelet aggregation in comparison with those of Rho-46RIARGDNP 33 5.1.2 The effect of Ech-21RIARGDNP on the inhibition of integrins and platelet aggregation in comparison with those of Rho-46RIARGDNP 34 5.1.3 The effect of Ech-21KRARGDWP on the inhibition of integrins and platelet aggregation in comparison with Rho-46RIARGDWP 34 5.1.4 The effect of Ech-21KRARGDWN on the inhibition of integrins and platelet aggregation in comparison with Rho-46RIARGDWN 34 CHAPTER VI CONCLUSIONS AND FUTURE PERSPECTIVE 35 REFERENCES 37 MATERIAL FORMULA 44 TABLES 52 FIGURES 64 APPENDIX TABLES 84 APPENDIX FIGURES 91

    Adorno-Cruz, V., & Liu, H. (2019). Regulation and functions of integrin α2 in cell adhesion and disease. Genes Dis, 6(1), 16-24.

    Akhtar, B., Muhammad, F., Sharif, A., & Anwar, M. I. (2021). Mechanistic insights of snake venom disintegrins in cancer treatment. European Journal of Pharmacology, 899, 174022.

    Aksorn, N., & Chanvorachote, P. (2019). Integrin as a Molecular Target for Anti-cancer Approaches in Lung Cancer. Anticancer Research, 39(2), 541-548.

    Alday-Parejo, B., Stupp, R., & Rüegg, C. (2019). Are Integrins Still Practicable Targets for Anti-Cancer Therapy? Cancers (Basel), 11(7).

    Arnaout, M. A., Mahalingam, B., & Xiong, J. P. (2005). Integrin structure, allostery, and bidirectional signaling. Annual Review of Cell and Developmental Biology, 21, 381-410.

    Askari, J. A., Buckley, P. A., Mould, A. P., & Humphries, M. J. (2009). Linking integrin conformation to function. Journal of Cell Science, 122(Pt 2), 165-170.

    Bachmann, M., Kukkurainen, S., Hytönen, V. P., & Wehrle-Haller, B. (2019). Cell Adhesion by Integrins. Physiological Reviews, 99(4), 1655-1699.

    Barczyk, M., Carracedo, S., & Gullberg, D. (2010). Integrins. Cell and Tissue Research, 339(1), 269-280.

    Brooks, P. C., Montgomery, A. M., Rosenfeld, M., Reisfeld, R. A., Hu, T., Klier, G., & Cheresh, D. A. (1994). Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell, 79(7), 1157-1164.

    Calderwood, D. A. (2004). Integrin activation. Journal of Cell Science, 117(Pt 5), 657-666.

    Campbell, I. D., & Humphries, M. J. (2011). Integrin structure, activation, and interactions. Cold Spring Harb Perspect Biol, 3(3).

    Cesar, P. H. S., Braga, M. A., Trento, M. V. C., Menaldo, D. L., & Marcussi, S. (2019). Snake Venom Disintegrins: An Overview of their Interaction with Integrins. Current Drug Targets, 20(4), 465-477.

    Chang, Y. T., Shiu, J. H., Huang, C. H., Chen, Y. C., Chen, C. Y., Chang, Y. S., & Chuang, W. J. (2017). Effects of the RGD loop and C-terminus of rhodostomin on regulating integrin αIIbβ3 recognition. PLoS One, 12(4), e0175321.

    Chastney, M. R., Conway, J. R. W., & Ivaska, J. (2021). Integrin adhesion complexes. Current Biology, 31(10), R536-r542.

    Chen, J. R., Zhao, J. T., & Xie, Z. Z. (2022). Integrin-mediated cancer progression as a specific target in clinical therapy. Biomed Pharmacother, 155, 113745.

    Cooper, J., & Giancotti, F. G. (2019). Integrin Signaling in Cancer: Mechanotransduction, Stemness, Epithelial Plasticity, and Therapeutic Resistance. Cancer Cell, 35(3), 347-367.

    David, V., Succar, B. B., de Moraes, J. A., Saldanha-Gama, R. F. G., Barja-Fidalgo, C., & Zingali, R. B. (2018). Recombinant and Chimeric Disintegrins in Preclinical Research. Toxins (Basel), 10(8).

    Desgrosellier, J. S., & Cheresh, D. A. (2010). Integrins in cancer: biological implications and therapeutic opportunities. Nature Reviews Cancer, 10(1), 9-22.

    Duro-Castano, A., Gallon, E., Decker, C., & Vicent, M. J. (2017). Modulating angiogenesis with integrin-targeted nanomedicines. Adv Drug Deliv Rev, 119, 101-119.

    Frangieh, J., Rima, M., Fajloun, Z., Henrion, D., Sabatier, J. M., Legros, C., & Mattei, C. (2021). Snake Venom Components: Tools and Cures to Target Cardiovascular Diseases. Molecules, 26(8).

    Gan, Z. R., Gould, R. J., Jacobs, J. W., Friedman, P. A., & Polokoff, M. A. (1988). Echistatin. A potent platelet aggregation inhibitor from the venom of the viper, Echis carinatus. Journal of Biological Chemistry, 263(36), 19827-19832.

    Giancotti, F. G., & Ruoslahti, E. (1999). Integrin signaling. Science, 285(5430), 1028-1032.

    Goodman, S. L., & Picard, M. (2012). Integrins as therapeutic targets. Trends in Pharmacological Sciences, 33(7), 405-412.

    Gould, R. J., Polokoff, M. A., Friedman, P. A., Huang, T. F., Holt, J. C., Cook, J. J., & Niewiarowski, S. (1990). Disintegrins: a family of integrin inhibitory proteins from viper venoms. Proceedings of the Society for Experimental Biology and Medicine, 195(2), 168-171.

    Guo, W., & Giancotti, F. G. (2004). Integrin signalling during tumour progression. Nature Reviews: Molecular Cell Biology, 5(10), 816-826.

    Hamidi, H., Pietilä, M., & Ivaska, J. (2016). The complexity of integrins in cancer and new scopes for therapeutic targeting. British Journal of Cancer, 115(9), 1017-1023.

    Hoshino, A., Costa-Silva, B., Shen, T.-L., Rodrigues, G., Hashimoto, A., Tesic Mark, M., . . . Lyden, D. (2015). Tumour exosome integrins determine organotropic metastasis. Nature, 527(7578), 329-335.

    Huang, T. F., Yeh, C. H., & Wu, W. B. (2001). Viper venom components affecting angiogenesis. Haemostasis, 31(3-6), 192-206.

    Hynes, R. O. (2002). Integrins: bidirectional, allosteric signaling machines. Cell, 110(6), 673-687.

    Janiszewska, M., Primi, M. C., & Izard, T. (2020). Cell adhesion in cancer: Beyond the migration of single cells. Journal of Biological Chemistry, 295(8), 2495-2505.

    Kadry, Y. A., & Calderwood, D. A. (2020). Chapter 22: Structural and signaling functions of integrins. Biochim Biophys Acta Biomembr, 1862(5), 183206.

    Kawamoto, E., Park, E. J., & Shimaoka, M. (2021). Methods to Study Integrin Functions on Exosomes. Methods Mol Biol, 2217, 265-281.

    Kechagia, J. Z., Ivaska, J., & Roca-Cusachs, P. (2019). Integrins as biomechanical sensors of the microenvironment. Nature Reviews: Molecular Cell Biology, 20(8), 457-473.

    Kim, C., Ye, F., & Ginsberg, M. H. (2011). Regulation of integrin activation. Annual Review of Cell and Developmental Biology, 27, 321-345.

    Kolvekar, N., Bhattacharya, N., Sarkar, A., & Chakrabarty, D. (2023). How snake venom disintegrins affect platelet aggregation and cancer proliferation. Toxicon, 221, 106982.

    Li, M., Wang, Y., Li, M., Wu, X., Setrerrahmane, S., & Xu, H. (2021). Integrins as attractive targets for cancer therapeutics. Acta Pharm Sin B, 11(9), 2726-2737.

    Liu, F., Wu, Q., Dong, Z., & Liu, K. (2023). Integrins in cancer: Emerging mechanisms and therapeutic opportunities. Pharmacology & Therapeutics, 247, 108458.

    Lowell, C. A., & Mayadas, T. N. (2012). Overview: studying integrins in vivo. Methods Mol Biol, 757, 369-397.

    Lu, X., Lu, D., Scully, M. F., & Kakkar, V. V. (2006). Integrins in drug targeting-RGD templates in toxins. Current Pharmaceutical Design, 12(22), 2749-2769.

    Marcinkiewicz, C., Vijay-Kumar, S., McLane, M. A., & Niewiarowski, S. (1997). Significance of RGD loop and C-terminal domain of echistatin for recognition of alphaIIb beta3 and alpha(v) beta3 integrins and expression of ligand-induced binding site. Blood, 90(4), 1565-1575.

    Marelli, U. K., Rechenmacher, F., Sobahi, T. R., Mas-Moruno, C., & Kessler, H. (2013). Tumor Targeting via Integrin Ligands. Front Oncol, 3, 222.

    Margadant, C., Monsuur, H. N., Norman, J. C., & Sonnenberg, A. (2011). Mechanisms of integrin activation and trafficking. Current Opinion in Cell Biology, 23(5), 607-614.

    McLane, M. A., Vijay-Kumar, S., Marcinkiewicz, C., Calvete, J. J., & Niewiarowski, S. (1996). Importance of the structure of the RGD-containing loop in the disintegrins echistatin and eristostatin for recognition of alpha IIb beta 3 and alpha v beta 3 integrins. FEBS Letters, 391(1-2), 139-143.

    Mezu-Ndubuisi, O. J., & Maheshwari, A. (2021). The role of integrins in inflammation and angiogenesis. Pediatr Res, 89(7), 1619-1626.

    Millard, M., Odde, S., & Neamati, N. (2011). Integrin targeted therapeutics. Theranostics, 1, 154-188.

    Nieberler, M., Reuning, U., Reichart, F., Notni, J., Wester, H. J., Schwaiger, M., . . . Kessler, H. (2017). Exploring the Role of RGD-Recognizing Integrins in Cancer. Cancers (Basel), 9(9).

    Nolte, M. A., Nolte-'t Hoen, E. N. M., & Margadant, C. (2021). Integrins Control Vesicular Trafficking; New Tricks for Old Dogs. Trends in Biochemical Sciences, 46(2), 124-137.

    Pang, X., He, X., Qiu, Z., Zhang, H., Xie, R., Liu, Z., . . . Cui, Y. (2023). Targeting integrin pathways: mechanisms and advances in therapy. Signal Transduct Target Ther, 8(1), 1.

    Pfaff, M., McLane, M. A., Beviglia, L., Niewiarowski, S., & Timpl, R. (1994). Comparison of disintegrins with limited variation in the RGD loop in their binding to purified integrins alpha IIb beta 3, alpha V beta 3 and alpha 5 beta 1 and in cell adhesion inhibition. Cell Adhesion & Communication, 2(6), 491-501.

    Rubtsov, M. A., Syrkina, M. S., & Aliev, G. (2016). RGD-based Therapy: Principles of Selectivity. Current Pharmaceutical Design, 22(7), 932-952.

    Slack, R. J., Macdonald, S. J. F., Roper, J. A., Jenkins, R. G., & Hatley, R. J. D. (2022). Emerging therapeutic opportunities for integrin inhibitors. Nature Reviews Drug Discovery, 21(1), 60-78.

    Sun, C. C., Qu, X. J., & Gao, Z. H. (2016). Arginine-Glycine-Aspartate-Binding Integrins as Therapeutic and Diagnostic Targets. Am J Ther, 23(1), e198-207.

    Sun, Z., Costell, M., & Fässler, R. (2019). Integrin activation by talin, kindlin and mechanical forces. Nature Cell Biology, 21(1), 25-31.

    Takada, Y., Ye, X., & Simon, S. (2007). The integrins. Genome Biol, 8(5), 215.

    Tamkun, J. W., DeSimone, D. W., Fonda, D., Patel, R. S., Buck, C., Horwitz, A. F., & Hynes, R. O. (1986). Structure of integrin, a glycoprotein involved in the transmembrane linkage between fibronectin and actin. Cell, 46(2), 271-282.

    Tian, J., Paquette-Straub, C., Sage, E. H., Funk, S. E., Patel, V., Galileo, D., & McLane, M. A. (2007). Inhibition of melanoma cell motility by the snake venom disintegrin eristostatin. Toxicon, 49(7), 899-908.

    Van Hove, I., Hu, T. T., Beets, K., Van Bergen, T., Etienne, I., Stitt, A. W., . . . Feyen, J. H. M. (2021). Targeting RGD-binding integrins as an integrative therapy for diabetic retinopathy and neovascular age-related macular degeneration. Prog Retin Eye Res, 85, 100966.

    Vasconcelos, A. A., Estrada, J. C., David, V., Wermelinger, L. S., Almeida, F. C. L., & Zingali, R. B. (2021). Structure-Function Relationship of the Disintegrin Family: Sequence Signature and Integrin Interaction. Front Mol Biosci, 8, 783301.

    Wang, F., Li, Y., Shen, Y., Wang, A., Wang, S., & Xie, T. (2013). The Functions and Applications of RGD in Tumor Therapy and Tissue Engineering. International Journal of Molecular Sciences, 14(7), 13447-13462.

    Weis, S. M., & Cheresh, D. A. (2011). αV integrins in angiogenesis and cancer. Cold Spring Harb Perspect Med, 1(1), a006478.

    Xiong, J., Yan, L., Zou, C., Wang, K., Chen, M., Xu, B., . . . Zhang, D. (2021). Integrins regulate stemness in solid tumor: an emerging therapeutic target. J Hematol Oncol, 14(1), 177.

    Yamada, Y., Onda, T., Hagiuda, A., Kan, R., Matsunuma, M., Hamada, K., . . . Nomizu, M. (2022). RGDX(1) X(2) motif regulates integrin αvβ5 binding for pluripotent stem cell adhesion. FASEB Journal, 36(7), e22389.

    Yamada, Y., Onda, T., Wada, Y., Hamada, K., Kikkawa, Y., & Nomizu, M. (2023). Structure-Activity Relationships of RGD-Containing Peptides in Integrin αvβ5-Mediated Cell Adhesion. ACS Omega, 8(5), 4687-4693.

    Yeh, C. H., Peng, H. C., Yang, R. S., & Huang, T. F. (2001). Rhodostomin, a snake venom disintegrin, inhibits angiogenesis elicited by basic fibroblast growth factor and suppresses tumor growth by a selective alpha(v)beta(3) blockade of endothelial cells. Molecular Pharmacology, 59(5), 1333-1342.

    Yin, L., Li, X., Wang, R., Zeng, Y., Zeng, Z., & Xie, T. (2023). Recent Research Progress of RGD Peptide–Modified Nanodrug Delivery Systems in Tumor Therapy. International Journal of Peptide Research and Therapeutics, 29(4), 53.

    Zannetti, A., Del Vecchio, S., Iommelli, F., Del Gatto, A., De Luca, S., Zaccaro, L., . . . Salvatore, M. (2009). Imaging of alpha(v)beta(3) expression by a bifunctional chimeric RGD peptide not cross-reacting with alpha(v)beta(5). Clinical Cancer Research, 15(16), 5224-5233.

    Zhou, Q., Nakada, M. T., Brooks, P. C., Swenson, S. D., Ritter, M. R., Argounova, S., . . . Markland, F. S. (2000). Contortrostatin, a homodimeric disintegrin, binds to integrin alphavbeta5. Biochemical and Biophysical Research Communications, 267(1), 350-355.

    無法下載圖示 校內:2028-08-16公開
    校外:2028-08-16公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE