| 研究生: |
康安 Kang, An |
|---|---|
| 論文名稱: |
以自動機為基礎的診斷測試步驟搜尋方法 An Automata Based Approach to Identify Diagnostic Test Procedures |
| 指導教授: |
張珏庭
Chang, Chuei-Tin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 122 |
| 中文關鍵詞: | 批次製程 、診斷測試 、自動機 、離散事件系統 |
| 外文關鍵詞: | Batch Process, Diagnostic Test, Automaton, Discrete-Event System |
| 相關次數: | 點閱:66 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在自動化批次製程的操作過程中,不免會發生硬體設備的故障,若無法利用既有線上測量數據,有效率地即時偵測到並診斷出失誤根源,則可能會造成嚴重的災害。本研究根據離散事件系統(discrete event system)理論發展出執行額外測試步驟的策略,以提升診斷效能。具體言之,我們藉由系統化方法建造出自動機模型來表示製程中所有元件和控制規範,即可據以自動搜尋出最適的診斷測試步驟。最後,我們也計畫進行一系列實際案例研究,來驗證提出方法的可行性。
Hardware failures are inevitable random events in operating any batch chemical plant. If fault origins are not diagnosed efficiently and accurately with online sensors, the subsequent consequences may be catastrophic. In order to enhance diagnostic performance, a novel approach is proposed in this study to synthesize test procedures on the basis of discrete-event system (DES) theory. In particular, all components in the given system and the required control specifications are first modeled systematically with automata and, then, an optimal operating procedure can be identified accordingly to differentiate the fault origins as much as possible. Finally, a series of realistic case studies are planned to confirm the validity and effectiveness of this proposed approach.
參考文獻
Caccavale, F., Pierri, F., Iamarino, M., Tufano, V., 2009. An integrated
approach to fault diagnosis for a class of chemical batch processes.
Journal of Process Control 19 (5), 827–841.
Cassandras, C.G., Lafortune, S., 1999. Introduction to Discrete Event
Systems, Kluwer Academic Publisher, Boston.
Chen, J.Y., Chang, C.T., 2009. Development of fault diagnosis strategies
based on qualitative predictions of symptom evolution behaviors.
Journal of Process Control 19 (5), 842–858.
Chen, Y.C., Yeh, M.L., Hong, C.L., Chang, C.T., 2010. Petri-net based
approach to configure online fault diagnosis systems for batch
processes. Industrial & Engineering Chemistry Research 49 (9), 4249–
4268.
Chen, J., Jiang, Y.C., 2011. Development of hidden semi-Markov models
for diagnosis of multiphase batch operation. Chemical Engineering
Science 66 (15), 1087–1099.
Chen, J.Y., Chang, C.T., 2007, Systematic Enumeration of Fuzzy
Diagnosis Rules for Identifying Multiple Faults in Chemical
Processes. Ind. Eng. Chem. Res 46 (11), 3635-3655.
Frank P., 1997. Analytical and qualitative model-based fault diagnosis–
A survey and some new results, European Journalof Control 2 (1), 6–
28.
Gertler, J., 1998. Fault detection and diagnosis in engineering system.
Marcel Dekker, New York
Hashizume, S., Yajima, T., Ito, T., Onogi, K., 2004. Synthesis of operating
procedures and procedural controllers for batch processes based on
Petri nets. Journal of the Chinese Institute of Chemical Engineers 35,
363-369.
Isermann, R., P. Ballé., 1997. Trends in the Application of Model
Based Fault Detection and Diagnosis of Technical Processes. Control
Engineering Practice 5 (5).
Korbicz J., Ko´scielny J., Kowalczuk Z., Cholewa W., 2004. FaultDiagnosis. Models, Artificial Intelligence, Applications,Springer-Verlag, Berlin.
Kourti, T., Macgregor, J.F., 1995. Process analysis, monitoring and
diagnosis, using multivariate projection methods. Chemometrics and
Intelligent Laboratory Systems 28 (1), 3–21.
Kourti, T., Nomikos, P., Macgregor, J.F., 1995. Analysis monitoring and
fault-diagnosis of batch processes using multiblock and multiway PLS.
Journal of Process Control 5 (4), 277–284.
Lee, J.M., Yoo, C.K., Lee, I.B., 2004. Fault detection of batch processes
using multiway kernel principal component analysis. Computers &
Chemical Engineering 28 (9), 1837–1847.
Liu, F., Qiu, D., Xing, H., Fan, Z., 2008. Decentralized diagnosis of
stochastic discrete event systems. IEEE Transactions on Automatic
Control 53 (2), 535–546.
Maurya, M., Rengaswamy, R., Venkatasubramanian, V., 2004.
Application of signed digraph-based analysis for fault diagnosis
chemical process flowsheets. Engineering Applications of Artificial
Intelligence 17 (5), 501–518.
Nomikos, P., MacGregor, J.F., 1994. Monitoring batch processes using
multiway principal component analysis. AIChE Journal 40 (8), 1361–
1375.
Pierri, F., Paviglianiti, G., Caccavale, F., Mattei, M., 2008.
Observer-based sensor fault detection and isolation for chemical batch
reactors. Engineering Applications of Artificial Intelligence 21 (8),
1204–1206.
Qiu, W.B., Kumar, R., 2006. Decentralized failure diagnosis of discreteevent system. IEEE Transactions on Systems Man and CyberneticsPart A-Systems and Humans 36 (3), 384-395.
Rigatos, G.G., 2009. Fault detection and isolation based on fuzzy automata. Information Sciences, 179 (12), 1893-1902.
Ruiz, D., Canton, J., Nougues, J.M., Espuna, A., Puigjaner, L., 2001a.
On-line fault diagnosis system support for reactive scheduling in
multipurpose batch chemical plants. Computers & Chemical
Engineering 25 (4–6), 829–837.
Ruiz, D., Nougues, J.M., Calderon, Z., Espuna, A., Puigjaner, L., 2001b.
Neural network based framework for fault diagnosis in batch chemical
plants. Computers & Chemical Engineering 24 (2–7), 777–784.
Sampath, M., Sengupta, R., Lafortune, S., Sinnamohideen, K.,
Teneketzis,D., 1995. Diagnosability of discrete-event systems. IEEE
Transactions on Automatic Control 40 (9), 1555-1575.
Sampath, M., Sengupta, R., Lafortune, S., Sinnamohideen, K.,
Teneketzis, D.C., 1996. Failure diagnosis using discrete-event models. IEEE Transactions on Control Systems Technology 4 (2),105-124.
Undey, C., Ertunc, S., Cinar, A., 2003. Online batch fed-batch process
performance monitoring, quality prediction, and variable contribution
analysis for diagnosis. Industrial & Engineering Chemistry Research
42 (20), 4645–4658.
Viswanathan, S., Johnsson, C., Venkatasubramanian, V., Arzen, K.E.,
1998b. Automating operating procedure synthesis for batch processes:
Part II. Implementation and application. Computers & Chemical
Engineering 22 (11), 1687– 1698.
Yeh, M.L., Chang, C.T., 2011. An automaton-based approach to evaluate
and improve online diagnosis schemes for multi-failure scenarios in
batch chemical processes. Chemical engineering research and design
89, 2652–2666
Zhang, Z., Wu, C., Zhang, B., Xia, Y., Li, A., 2005. SDG multiple fault
diagnosis by real-time inverse inference. Reliability Engineering and
System Safety 87 (2), 173–189.