| 研究生: |
林子旋 Lim, Tze-Suen |
|---|---|
| 論文名稱: |
使用四維血流磁振造影之升主動脈剪應力視覺化系統 Visualization System of Ascending Aortic WSS using 4D Flow MRI |
| 指導教授: |
郭淑美
Guo, Shu-Mei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 資訊工程學系 Department of Computer Science and Information Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 53 |
| 中文關鍵詞: | 四維血流磁共振影像 、壁面剪應力 、雙葉性動脈瓣 |
| 外文關鍵詞: | Bicuspid Aorta Valve, 4D Flow MRI, Wall Shear Stress |
| 相關次數: | 點閱:78 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
升主動脈裡的壁剪切應力 (wall shear stress ,WSS) 的變化已被證明與主動脈病如擴張、動脈瘤和夾層有關。 這種主動脈病在雙葉主動脈瓣 (biscupid aortic valve, BAV) 疾病患者中很常見。 基於四維磁共振成像 (4D Flow Magnetic resonance imaging, 4D Flow MRI) 技術獲得的數據對壁面剪應力進行可視化和分析,有利於研究血管內的異常情況,並有助於早期關節病的診斷。 壁面剪應力的視化已經開發出來,但並不通用,商業軟件成本高,部分商業軟件沒有提供詳細的量化數據。 因此,本論文的目的是開發一個可視化系統來研究血管壁剪切應力的信息,以幫助醫生診斷潛在的冠心病患者。
Alterations of wall shear stress (WSS) of the ascending aorta (AAo) have been proven to relate to aortopathies such as dilation, aneurysm, and dissection. Such aortopathies are common among patients with bicuspid aorta valve (BAV) disease. The visualization and analysis of wall shear stress based on the data acquired from the 4-dimensional magnetic resonance imaging (4D MRI) technique are beneficial in studying the abnormalities within blood vessels and assisting in the diagnosis of early arthropathies. The visualization of wall shear stress has been developed but it is not generalized. Although there is commercial software available, it comes with a high cost, and some of the commercial software does not provide detailed quantified data. Therefore, the purpose of this thesis is to develop a visualization system to study the information of wall shear stress in blood vessels to help doctors in diagnosing patients with potential aortic disease.
[1] A. Frydrychowicz, A. F. Stalder, M. F. Russe, J. Bock, S. Bauer, A. Harloff, A. Berger, M. Langer, J. Hennig, M. Markl, “Three-Dimensional Analysis of Segmental Wall Shear Stress in the Aorta by Flow-Sensitive Four-Dimensional-MRI,” Journal of Magnetic Resonance Imaging, Vol. 30, No. 1, pp. 77-84, Jul. 2009.
[2] T. Liu, M. Xie, Q. Lv, Y. Li, L. Fang, L. Zhang, W. Deng, J. Wang, “Bicuspid Aortic Valve: An Update in Morphology, Genetics, Biomarker, Complications, Imaging Diagnosis and Treatment,” Front Physiol, Vol. 9, No. 1921, 2019.
[3] P. W. M. Fedak, S. Verma, T. E. David, R. L. Leask, R. D. Weisel, J. Butany, “Clinical and Pathophysiological Implications of a Bicuspid Aortic Valve,” Circulation, Vol. 106, No. 8, 2002.
[4] P. W. M. Fedak, “Bicuspid Aortic Valve and the Specialty Clinic: Are Your Patients at Risk?,” Cardiology in the Young. Vol. 27, No. 3, pp. 411-412, Apr. 2017.
[5] F. Sophocleous, E. G. Milano, G. Pontecorboli, P. Chivasso, M. Caputo, C. Rajakaruna, C. Bucciarelli-Ducci, C. Emanueli, G. Biglino, “Enlightening the Association between Bicuspid Aortic Valve and Aortopathy,” Journal of Cardiovascular Development and Disease, Vol. 5, Issue. 2, No. 21, Apr. 2018.
[6] K. S. Cunningham, A. I. Gotlieb, “The Role of Shear Stress in the Pathogenesis of Atherosclerosis,” Laboratory Investigation: A Journal of Technical Methods and Pathology, Vol. 85, Issue. 1, pp. 9-23, 2005.
[7] M. Bäck, T. C. Gasser, J. B. Michel, G. Caligiuri, “Biomechanical Factors in the Biology of Aortic Wall and Aortic Valve Diseases,” Cardiovascular Research, Vol. 99, Issue. 2, pp. 232-241, Jul. 2013.
[8] K. J. Macura, F. M. Corl, E. K. Fishman, D. A. Bluemke, “Pathogenesis in Acute Aortic Syndromes: Aortic Dissection, Intramural Hematoma, and Penetrating Atherosclerotic Aortic Ulcer,” American Journal of Roentgenology, Vol. 181, Issue 2, No. 2, pp. 309-316, 2003.
[9] A. J. Barker, C. Lanning, R. Shandas, “Quantification of Hemodynamic Wall Shear Stress in Patients with Bicuspid Aortic Valve using Phase-Contrast MRI,” Annals of Biomedical Engineering, Vol. 38, pp. 788-800, Mar. 2010.
[10] A. J. Barker, M. Markl, J. Burk, R. Lorenz, J. Bock, S. Bauer, J. Schulz-Menger, F. von Knobelsdorff-Brenkenhoff, “Bicuspid Aortic Valve Is Associated with Altered Wall Shear Stress in the Ascending Aorta,” Circulation Cardiovascular Imaging, Vol. 5, pp. 457-466, Jul. 2012.
[11] E. Bollache, D. G. Guzzardi, S. Sattari, K. E. Olsen, E. S. Di Martino, S. C. Malaisrie, P. van Ooij, J. Collins, J. Carr, P. M. McCarthy, M. Markl, A. J. Barker, P. W. M. Fedak, “Aortic Valve-Mediated Wall Shear Stress Is Heterogeneous and Predicts Regional Aortic Elastic Fiber Thinning in Bicuspid Aortic Valve-Associated Aortopathy,” The Journal of Thoracic and Cardiovascular Surgery, Vol. 156, Issue. 6, pp. 2110-2111, Dec. 2018.
[12] M. Unser, "Splines: A Perfect Fit for Signal and Image Processing," IEEE Signal Processing Magazine, Vol. 16, No. 6, pp. 22-38, Nov. 1999.
[13] E. M. Masutani, F. Contijoch, E. Kyubwa, “Volumetric Segmentation-free Method for Rapid Visualization of Vascular Wall Shear Stress using 4D flow MRI”. Magnetic Resonance in Medicine, Vol: 80, Issue 2, pp. 748-755, Aug, 2018.
[14] P. van Ooij, A. L. Powell, W. V. Potters, J. C. Carr, M. Markl, A. J. Barker, “Reproducibility and Interobserver Variability of Systolic Blood Flow Velocity and 3D Wall Shear Stress Derived from 4D Flow MRI in the Healthy Aorta,” Journal of Magnetic Resonance Imaging, Vol. 43, pp. 236-248, 2016.
[15] W. V. Potters WV, P. van Ooij, H Marquering, E vanBavel, AJ Nederveen, “Volumetric Arterial Wall Shear Stress Calculation Based on Cine Phase Contrast MRI,” Journal of Magnetic Resonance Imaging, Vol. 41, Issue. 2, pp.505-16, Feb. 2015
[16] A. L. Wentland, T. M. Grist, O. Wieben, “Review of MRI-Based Measurements of Pulse Wave Velocity: A Biomarker of Arterial Stiffness,” Cardiovascular Diagnosis and Therapy, Vol. 4, Issue. 2, pp. 193-206, Apr. 2014.
[17] H. Ha, J. Lantz, H. Haraldsson, B. Casas, M. Ziegler, M. Karisson, D. Saloner, P. Dyverfeldt, T. Ebbers, “Assessment of Turbulent Viscous Stress using ICOSA 4D Flow MRI for Prediction of Hemodynamic Blood Damage,” Scientific Reports 6, No. 39773, 2016.
[18] H. Ha, G. B. Kim, J. Kweon, S. J. Lee, Y. Kim, D. H. Lee, D. H. Yang, “Hemodynamic Measurement Using Four-Dimensional Phase-Contrast MRI: Quantification of Hemodynamic Parameters and Clinical Applications,” Korean Journal of Radiology, Vol. 17, Issue. 4, pp. 445-462, Jul 2016.
[19] M. Markl, A. Frydrychowicz, S. Kozerke, M. Hope, O. Wieben, “4D Flow MRI,” Journal of Magnetic Resonance Imaging, Vol. 36, Issue 5, pp. 1015-1036, 2012.
[20] Z. Stankovic, B. D. Allen, J. Garcia, K. B. Jarvis, M. Markl, “4D Flow Imaging with MRI,” Cardiovascular Diagnosis and Therapy, Vol. 4, Issue. 2, pp. 173-192, Apr. 2014.
[21] E. T. Bieging, A. Frydrychowicz, A. Wentland, B. R. Landgraf, K. M. Johnson, O. Wieben, C. J. François, “In Vivo Three-dimensional MR Wall Shear Stress Estimation in Ascending Aortic Dilatation,” Journal of Magnetic Resonance Imaging, Vol. 33, Issue 3, pp. 589–597, Mar. 2011.
[22] M. Levoy, “Display of Surfaces from Volume Data,” IEEE Computer Graphics and Applications, Vol. 8, No. 3, pp. 29-37, May 1988.
[23] W. E. Lorensen, H. E. Cline, “Marching Cubes: A High Resolution 3D Surface Construction Algorithm,” ACM SIGGRAPH Computer Graphics, Vol. 21, No. 4, Jul. 1987.
校內:2026-10-21公開