| 研究生: |
王麟玉 Wang, Lin-Yu |
|---|---|
| 論文名稱: |
CXC ligand 5 在早產兒罹患大腦白質病變致病機轉中扮演角色之研究 The role of the CXC ligand 5 in white matter injury of immature brain |
| 指導教授: |
黃朝慶
Huang, Chao-Ching |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 臨床醫學研究所 Institute of Clinical Medicine |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 早產兒 、大腦白質受損 、大腦周腦室白質軟化症 、小膠質細胞 、嗜中性白血球 |
| 外文關鍵詞: | prematurity, white matter injury, periventricular leukomalacia, microglia, neutrophil |
| 相關次數: | 點閱:113 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
大腦白質受損所引起的腦傷佔早產兒腦部病變之大部份,同時合併腦神經發育不良。根據統計顯示出生體重小於1500公克之早產兒,約有10%出現合併腦性麻痺以及50%罹患認知及行為缺陷的疾病。大腦周腦室白質軟化症主要是由大腦深部白質受損所引起的腦傷。大腦周腦室白質軟化症成因包括oligodendrocyte之受損 astrogliosis 及小膠質細胞之活化。這些因素造成大腦白質局部或廣泛性傷害,導致大腦後期的腦室擴大。目前CXCL5 被證實與成人之急性缺血性腦病變之急性發炎期中佔有重要角色,也被證實與早產及胎內感染有關。因此我們假設 CXCL5於早產兒之大腦周腦室白質軟化症中佔有重要之角色。
我們之前的研究已建立了一種,脂多醣合併缺氧窒息的幼鼠大腦白質受損疾病的模式,於出生第二天之新生鼠給予低劑量脂多醣(0.05mg/kg)及缺氧窒息會引起大腦白質發炎導致白質病變。我們利用此老鼠疾病模式探CXCL5與大腦白質病變之關係。於Western blot檢驗發現於缺氧窒息6小時及24小時,CXCL5表現有增加。於缺氧窒息24小時腦部切片,觀察CXCL5的表現於受損白質有增加的現象。螢光免疫染色顯示白質小膠質細胞為主要分泌CXCL5之細胞,而在灰質主要以neuron為主要分泌CXCL5之細胞。我們進一步發現缺氧前2小時給予腦內注射CXCL5 取代LPS 於幼鼠大腦白質受損疾病的模式,於幼鼠11天大時,觀察腦部切片發現有MBP蛋白表現降低及astrogliosis及大腦腦室擴大,相較於NS+HI或對照組NS組別。於缺氧24小時觀察腦部切片發現,腦內注射CXCL5合併缺氧窒息會導致血腦屏障受損、小膠質細胞活化及嗜中性白血球浸潤。腦內注射CXCL5無合併缺氧窒息組別,只導致血腦屏障受損及嗜中性白血球浸潤但無小膠質細胞活化。
根據上述結果,我們認為CXCL5在幼鼠大腦白質受損疾病中扮演非常重要之致病角色。我們的實驗結果更加証明了CXCL5會造成具有幼鼠大腦白質受損, 同時具有臨床上診斷及治療早產兒白質受傷藥物之前瞻性。
Cerebral white matter injury (WMI) is the most common form of injury in the preterm infants, and is associated with subsequent neurodevelopmental impairment. Among the survivors of very-low-birth-weight infants, 10% exhibit cerebral palsy, and 50% have cognitive/behavioral deficits. Periventricular leukomalacia (PVL) is the major form of white matter injury, characterized by loss of premyelinating oligodendrocytes (pre-OLs), astrogliosis, and microglial infiltration. Increased CXCL5 expression has been found in preterm infants with intrauterine infection. Using an established model of selective white matter injury in postpartum (P) day 2 rat pups induced by lipopolysaccharide (LPS) followed by hypoxic ischemia (HI), we hypothesized that CXCL5 is involved in the white matter injury of the immature brain.
We found that P2 rat pups had increased CXCL5 expression in the cerebral cortex compared with P7 and P30 rats. All the P3, P7 and P30 rats had very few CXCL5 expression in the white matter. Immunofluorescence showed that CXCL5 was mainly expressed in cortical neurons of P2 pups. Western blots demonstrated increases of CXCL5 levels in the cortex 6 h to 24 h after hypoxia in the LPS+HI pups. Immunohistochemical analysis showed increased CXCL5 immunoreactivity in the white matter 24 h after HI in the LPS+HI group. Immunofluorescence showed that CXCL5 was mainly expressed in the CD11b+ microglia in the white matter and neurons in the cortex.
To confirm that CXCL5 sensitized HI-induced white matter injury, we intracerebroventricularly injected recombinant CXCL5 (2 ug per rat) to P2 rat pups before HI. On P11, the CXCL5+HI but not the NS+HI group had significant decreases of myelin basic protein (MBP) expression, increases of astrocytosis in the white matter, and increases of ventricle size but without neuronal injury in the ipsilateral hemisphere compared with the NS group. The CXCL5 group also had significant decreases of MBP in the white matter. In addition, the CXCL5+HI group had significant increases of blood-brain barrier damage evidenced by increases of extravascular IgG leakage, and increases of microglia and neutrophil infiltration in the white matter than the NS group. The CXCL5 group had more blood-brain barrier damage and upregulated neutrophil but not microglia infiltration in the white matter than the NS group.
In the immature brain, CXCL5 followed by HI upregulates microglia and neutrophils infiltration, and causes white matter injury, while CXCL5 alone predominately induces neutrophil infiltration and also causes white matter injury. Targeting on CXCL5 and its receptor signaling may be an attractive therapeutic strategy to protect against white matter injury in the immature brain.
Baggiolini M (1998) Chemokiines and leukocyte traffic. Nature 329:565-568.
Baud O, Emilie D, Pelletier E, Lacaze-Masmonteil T, Zupan V, Fernandez H, Dehan M, Frydman R, Ville Y (1999) Amniotic fluid concentratons of interleukin-1β, interleukin-6 and TNF-α in chorioamnionitis before 32 weeks of gestaton:histological associations and neonatal outcome. Br J Obstet Gynaecol 106:72-77.
Bell MD, Taub DD, and Perry VH (1996) Overriding the brain’s intrinsic resistance to leukocyte recruitment with intraparenchymal injections of recombinant chemokines. Neuroscience 74:283–292.
Billiards SS, Haynes RL, Folkerth RD (2006) Development of microglia in the cerebral white matter of the human fetus and infant. J Comp Neurol 497: 199-208.
Blomgren K, Hagberg H (2006) Free radicals, mitochondria, and hypoxia-ischemia in the developing brain. Free Radic Biol Med 40:388–397
Bona E, Andersson AL, Blomgren K et al (1999). Chemokine and inflammatory cell response to hypoxia-ischemia in immature rats. Pediatr Res 45: 500-509.
Boryana K. Popivanova, Koji Koike, Anton B. Tonchev, Yuko Ishida (2003) Accumulation of microglial cells expressin ELP motig-positive CXC chemokines and their receptor CXCR2 in monkey hippocampus after ischemia-reperfusion. Brain research 970: 295-204.
Cai Z, Pang Y, Xiao F, Rhodes PG (2001) Differential roles of tumor necrosis factor-alpha and interleukon-1 beta in lipopolysaccharide-induced brain injury in the neonatal rat. Brain Res 975:37-47.
Carlson T, Kroenke M, Rao P, Lane TE, Segal B (2008) The Th17-ELR+ CXC chemokine pathway is essential for the development of central nervous system autoimmune disease. J Exp Med 205: 811–823.
Chang MS, McNinch J, Basu R, Simonet S (1994) "Cloning and characterization of the human neutrophil-activating peptide (ENA-78) gene". J. Biol. Chem. 269 41: 25277–82.
Chandrasekar B, Smith JB, Freeman GL (2001) Ischemia-reperfusion of rat myocardium activates nuclear factor-kappaB and induces neutrohil infiltration via llipopolysaccharide-induced CXC chemokine. Circulation 103: 2296-2302.
Chang YC, Huang CC, Hung PL, Huang HM (2008) Rolipram, a phosphodiesterase type IV inhibitor, exacerbates periventricular white matter lesions in rat pups. Pediatr Res 64:234-239
Dammann O, Durum S, Leviton A (2001) Do white cells matter in white matter damage? Trend Neurosci 24:320–324.
Deguchi K, Mizuguchi M, Takashima S (1996) Immunohistochemical expression of tumor necrosis factor α in neonatal leukomalacia. pediatr Neurol 14:13-16
Fan Lw, Pang L, Lin S et al (2005) Minocycline attenuates lipopolysaccharide-induced white matter injury in the neonatal rat brain. Neuroscience 133: 159-168.
Follett PL, Rosenberg PA, Volpe JJ, Jensen FE (2000) NBQX attenuates excitotoxic injury in developing white matter. J Neurosci 20:9235-9241
Garcia J, Liu K, Yoshida Y, Lian J, Chen S, del Aoppo G (1994) Influx of leukocytes and platelets in an evolving brain infarct (Wistar rat). Am J Pathol 144: 188-199
Glabinski AR, Tani M S, Aras MH, Stoler VK, and Ransohoff RM. (1995) Regulation and function of central nervous system chemokines. Int J Dev Neurosci 13:153-165.
Gonzalez-Scarano F, Baltuch G. (1999) Microglia s mediators of inflammatory and degenerative disease. Annu Rev Neurosci 22: 219-240.
Gray, P. (1994) The role of chemokines and their receptors in leukocyte activation. In Chemotactic cytokines: targets for therapeutic development. K. Gallagher, editor. IBC, Washington, DC. 18-126.
Han BH, Holtzman DM (2000) BDNF protects the neonatal brain from hypoxic-ischemic injury in vivo via the ERK pathway. J Neurosci 20:5775-5781
Hausmann EH, Berman NE, Wang YY, Meara JB, Wood GW, Klein RM (1998) Selective chemokine mRNA expression following brain injury. Brain Res 788: 49-59.
Kadhim H, Tabarki B, Prez CD (2003) Cytokine immunoreativity I cortical and subcortical neurons in periventricular leukomalacia: are cytokines implicated in neuronal dysfunction in cerebral palsy? Acta Neuropathol 105: 209-216
Haynes RL, Folkerth RD, Keefe R, et al. (2003) Nitrosative and oxidative injury to premyelinating oligodendrocytes is accompanied by microglial activation in periventricular leukomalcia in the human premature infant. J Neuropathol Exp Neurol 62: 441-50
Hudome S, Palmer C, Roberts RL, Mauger D, Housman C, Towfighi J (1997) The role of neutrophils in the production of hypoxicischemic brain injury in the neonatal rat. Pediatr Res 41:607–616.
Hui-MinYu, Tian-Ming Yuan, Wei-Zhong Gu, and Jian-Ping Li ( 2004) Expression of glial fibrillary acidic protein in developing rat brain after intrauterine infection. Neuropathology; 24 , 136–143
Jeyaseelan S, Manzer R, Young SK (2005). Induction of CXCL5 during inflammation in the rodent lung involves activation of alveolar epithelium. Am J Respir Cell Mol Biol 32:531-539.
Jeyaseelan S, Chu HW, Young SK, Worthen GS (2004). Transcriptional profiling of lipopolysaccharide-induced acute lung injury. Infect Immun 72:7247-7256.
Kadhim,H B. Tabarki, G. Verellen (2001). Inflammatory cytokines in the pathogenesis of periventricular leukomalacia. Neurology 56:1278-1284.
Keelan JA, Yang J, Romera RJ, Chaiwor apongsa T (2004) Epithelial Cell-Derived Neutrophil-activating peptide-78 is present in fetal membranes and amniotic fluid at increased concentrations with intra-amniotic infection and preterm delivery. Biol Reprod 70: 253-259.
Khwaja O, Volpe JJ (2008) Pathogenesis of cerebral white matter injury of prematurity.Arch Dis Child Fetal Neonatal Ed 93: F153-F161.
Kim JV, Kang SS, Dustin ML, McGavern DB (2009) Myelomonocytic cell recruitment causes fatal CNS vascular injury during acute viral meningitis. Nature 457: 191–195.
Kreutzberg GW (1995) Microglia, the first line of defence in brain pathologies. Arzneimittelforschung 45:357-360.
Lee HT, Chang YC, Tu YF, Huang CC (2009) VEGF-A/VEGFR-2 signaling leading to cAMP response element-binding protein phosphorylation is a shared pathway underlying the protective effect of preconditioning on neurons and endothelial cells. J Neurosci 29:4356-4368
Lee HT, Chang YC, Wang LY, Wang ST, Huang CC, Ho CJ (2004) cAMP response element-binding protein activation in ligation preconditioning in neonatal brain. Ann Neurol 56:611–623
Lin HY, Huang CC, Chang KF (2009) Lipopolysaccharide preconditioning reduces neuroinflammation against hypoxic ischemia and provides long-term outcome of neuroprotection in neonatal rat. Pediatr Res 66:254-259
Matsuo Y, Onodera H, Shiga Y, Nakamura M, Nimomiya M, Kihara T, Kogure K (1994) Correlation between myeloperoxidase-quantified neutrophil accumulation and is chemic brain injury in the rat : Effects of neutrophil depletion. Stroke 215: 1469-175.
Miller, MD, and Krange MS (1992) Biology and biochemistryof the chemokines, a family of chemotactic and inflammatory cytokines. Crit Rev Immunol 12:17-46
Pang Y, Cai Z, Rhodes PG (2003) Disturbance of oligodendrocyte development, hypomyelination and white matter injury in the neonatal rat brain after intracerebral injection of lipopolysaccharide. Brain Res Dev Brain Res 140:205-214.
Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates. New York: Academic.
Resch B, Vollaard Esther, Maurer U, Haas J et al (2000) Risk factors and determinants of neurodevelopmental outcome in cystic periventricular leukomalacia. Eur J Pediatr 159; 663-670
Rovai Le, Herschman HR, Smith JB (1998) The murine neutrophil-chemoattractant chmokines LIX, KC, and tissue-specific sensitivities to glucocorticoid regulation in endotosemia. J Leukoc Biol 64:494-502.
Simpson JE, Newcombe J, Cuzner ML, Woodroofe MN (1998) Expression of monocyte chemoattractant protein-1 and other b-chemokines by resident glia and inflammatory cells in multiple sclerosis lesions. J Neuroimmunol 84: 238-249.
Shiga Y, Onodera H, Kogure K, Yamasaki Y, Yashima Y, Syozyhara H, Sendo F (1991) Neutrophil as a mediator of ischemic edema formation in the brain. Neurosci Lett 125: 110-112
Smith J. B., and H. R. Herschman.(1995) Glucocorticoid-attenuate response genes encode intercellular mediators, including a new CXC chemokine. J Biol Chem 270:16756-16765.
Svedin P, Hagberg H, Savman K, Zhu C, Mallard C (2007) Matric metalloproteinase-9 gene knock-out protects the immature brain after cerebral hypoxia-ischemia. J Neurosci 27:1511-1518
Susan H, Charles P, Rebecca LB et al (1997) The role of n eutrophils in the production of hypoxic-ischmic Brain injury in the neonatal rat. Pediatric research 41: 607-616
Tani, M., and R.M. Ransohoff. (1994) Do chemokines mediate inflammatory cell invasion of the central nervous system parenchyma? Brain Pathol 4: 135-143.
Van Vliet EA, da Costa Arauo S, Redeker S, Van Schaik R, Aronica E, Gorter JA (2007) Blood brain barrier leakage may lead to progression of temporal lobe epilepsy. Brain 130:521-534.
Vincer MJ , Allen AC, Joseph KS, Stinson DA, Scott H, Wood E (2006) Increasing Prevalence of Cerebral Palsy Among Very Preterm Infants: A Population-Based Study. Pediatrics 118:e1621-1626.
Volpe JJ (2009) Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet neurology 8:110-124
Wang CA, Yang KD., Huang CB, Huang CH, Huang LT (2004) Cord blood myeloperoxidase in preterm infants with periventricular hyperechogenicity. Chang Gung Med J 27: 337-43.
Wang LW (2010) Role of microglia in lipopolysaccharide-sensitized hypoxic-ischemic white matter injury in the developing brain.
Pediatric Res in revised
Wuyts, A., D’Haese A, Cremers V, Menten P, Lenaerts JP, De Loof A, Heremans H, Proost P, Van Damme J (1999) NH2- and COOH-terminal truncations of murine granulocyte chemotactic protein-2 augment the in vitro and in vivo neutrophil chemotactic potency. J Immunol 163:6155-6163.
Wu YW colford JM (2000) Chorioamnionitis as a risk factor for cerebral palsy: A meta-analysis. JAMA 284: 1417-24
Wu YW (2000) Systemic review of chorioamniotitis and cerebral palsy. Ment Retard Dev Disabil Res Rev 8:25-9.
Yoon BH, Romero R, Yang SH, Jun JK, Park KH, Kim IO, Choi JH, Syn HC (1996) Interleukin-6 concentrations in umbilical cord plasma are elevated in neonates with white matter lesionsassocited with periventricular leukomalacia. Am J Obstet Gynecol 174:1433-1440
Yoon BH, Jun JK, Romero R, Park KH, Gomez R, Choi JH, Kim IO (1997) Amniotic fluid inflammatory cytokines ( interleukin-6, interleukin-1β, and tumor necrosis factor-α), neonatal brain white matter lesions, and cerebral palsy. Am J Obstet Gynecol 177; 19-26.
Yuan TM, Yu HM, Gu WZ, Li JP (2005) White matter damage and chemokine induction in developing rat brain after intra-uterine infection. J Perinat Med 33: 415-422
Zaremba J, Skrobanski P, Losy J (2006) The level of chemokine CXCL5 in the cerebrospinal fluid is increased curing the first 24 hours of ischaemic stroke and correlates with the size of early brain damage. Folia Morphol 65: 1-5
Zhou J, Stohlman SA, Hinton DR, Marten NW (2003) Neutrophils promote mononuclear cell infiltration during viral-induced encephalitis. J Immunol 170:331–3336.