| 研究生: |
蘇傑璋 Su, Chieh-Chang |
|---|---|
| 論文名稱: |
羥丙基甲基纖維素鄰苯二甲酸酯與醋酸羥丙基甲基纖維素琥珀酸酯塗層的抗腐蝕及耐久特性研究 Anti-corrosion and durability performance of hydroxypropyl methylcellulose phthalate and hydroxypropyl methylcellulose acetate succinate coating |
| 指導教授: |
施士塵
Shi, Shih-Chen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 49 |
| 中文關鍵詞: | EIS 、HPMCP 、HPMCAS 、溶脹 、腐蝕機制 |
| 外文關鍵詞: | EIS, HPMCP, HPMCAS, Swelling, Corrosion mechanism |
| 相關次數: | 點閱:69 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
使用羥丙基甲基纖維素鄰苯二甲酸酯(hydroxypropyl methylcellulose phthalate,簡稱HPMCP)和醋酸羥丙基甲基纖維素琥珀酸酯(hydroxypropyl methylcellulose acetate succinate,簡稱HPMCAS),這是羥丙基甲基纖維素(hydroxypropyl methylcellulose,簡稱HPMC)的延伸物,並且同時都具有生物可分解性,是個對生物友善的材料。這兩種材料與HPMC最大的不同在於位於酸性溶液中的溶解度,正因為這個特性,本文想研究出當HPMCP與HPMCAS在高速鋼上形成塗層後,在不同酸鹼值的溶液中以及不同的浸泡時間的耐久性抗腐蝕測試。測試包含動電位極化法測試(potentiodynamic polarization)還有電化學阻抗頻譜(Electrochemical Impedance Spectroscopy,簡稱EIS)。HPMCP測試的結果,約在浸泡8小時之後,材料的抗腐蝕效果會達到最差的階段,再持續地浸泡下去達24小時,反而抗腐蝕效果會回復到比8小時更好的情況。這方面是因為HPMCP塗層浸置在溶液中產生一些水的通道,使得在高速鋼與塗層之間產生了一些鐵的氧化物,得以提升抗腐蝕效果。HPMCAS的測試結果與前面不同,在浸泡的前半段抗腐蝕效果和預期不同地漸漸上升,在後半段再開始下降,這裡是因為HPMCAS塗層會發生溶脹現象,剛開始浸置在溶液中,塗層會吸水發生溶脹並產生凝膠層,當吸收到極限之後,原本的屏障會出現更多的吸水路徑而使抗腐蝕效果下降。
In this research, hydroxypropyl methylcellulose phthalate (HPMCP) and hydroxypropyl methylcellulose acetate succinate (HPMCAS), which are the derivatives of hydroxypropyl methylcellulose (HPMC) as well as bio-friendly materials were used for coating on high-speed steel (HSS) to protect HSS in acid condition. Anti-corrosion property of HPMCP and HPMCAS in acid solutions with different pH and different immersing time was studied, and the electrochemical behavior was evaluated by potentiodynamic polarization and by electrochemical impedance spectroscopy (EIS).
Experimental result for HPMCP coating after 8 hours immersing, showing the worst anti-corrosion performance; however, the material shows better anti-corrosion performance after 24 hours immersing than 8 hours, which may due to the slightly improvement of anti-corrosion property provided by iron oxides. Thus, it is inferred that the corrosion mechanism is the generation of water paths followed by the formation of iron oxides between the HSS and HPMCP coating.
HPMCAS is totally different than HPMCP. At the low immersing time, the anti-corrosion property of HPMCAS is improved as time increase. After turning point, the anti-corrosion property of HPMCAS is weakened as time increase. The mechanism is swelling, by absorbing water and swelling, and coating change into gel layer gradually. When the adsorption reach the limit, coating generates more water paths, result in the weakened of anti-corrosion property. Also, HPMCAS coating shows the best anti-corrosion performance at pH = 3.
[1] Y. Byun, A. Ward, S. Whiteside,Formation and characterization of shellac-hydroxypropyl methylcellulose composite films, Food hydrocolloids, 27 (2012) pp.364-370.
[2] M. Brogly, A. Fahs, S. Bistac,Surface properties of new-cellulose based polymer coatings for oral drug delivery systems, Polym. Prepr, 52 (2011) pp.1055-1056.
[3] D. Zhou, D. Law, J. Reynolds, L. Davis, C. Smith, J.L. Torres, V. Dave, N. Gopinathan, D.T. Hernandez, M.K. Springman,Understanding and managing the impact of HPMC variability on drug release from controlled release formulations, Journal of pharmaceutical sciences, 103 (2014) pp.1664-1672.
[4] S.C. Joshi,Sol-gel behavior of hydroxypropyl methylcellulose (HPMC) in ionic media including drug release, Materials, 4 (2011) pp.1861-1905.
[5] M.E. Barcenas, C.M. Rosell,Effect of HPMC addition on the microstructure, quality and aging of wheat bread, Food hydrocolloids, 19 (2005) pp.1037-1043.
[6] J. Siepmann, N. Peppas,Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC), Advanced drug delivery reviews, 64 (2012) pp.163-174.
[7] J. Siepmann, Y. Karrout, M. Gehrke, F. Penz, F. Siepmann,Predicting drug release from HPMC/lactose tablets, International journal of pharmaceutics, 441 (2013) pp.826-834.
[8] C.Y. Basch, R.J. Jagus, S.K. Flores,Physical and antimicrobial properties of tapioca starch-HPMC edible films incorporated with nisin and/or potassium sorbate, Food and Bioprocess Technology, 6 (2013) pp.2419-2428.
[9] F.A. Osorio, P. Molina, S. Matiacevich, J. Enrione, O. Skurtys,Characteristics of hydroxy propyl methyl cellulose (HPMC) based edible film developed for blueberry coatings, Procedia food science, 1 (2011) pp.287-293.
[10] C. Bilbao-Sáinz, R.J. Avena-Bustillos, D.F. Wood, T.G. Williams, T.H. McHugh,Composite edible films based on hydroxypropyl methylcellulose reinforced with microcrystalline cellulose nanoparticles, Journal of agricultural and food chemistry, 58 (2010) pp.3753-3760.
[11] S.-C. Shi, T.-F. Huang,Raman study of HPMC biopolymer transfer layer formation under tribology test, Optical and Quantum Electronics, 48 (2016) pp.532.
[12] I. Arukalam, I. Madufo, O. Ogbobe, E. Oguzie,Adsorption and inhibitive properties of hydroxypropyl methylcellulose on the acid corrosion of mild steel, International Journal of Applied Science and Engineering Research, 3 (2014) pp.241-256.
[13] I. Okechi Arukalam, I. Chimezie Madufor, O. Ogbobe, E. E. Oguzie,Hydroxypropyl methylcellulose as a polymeric corrosion inhibitor for aluminium, Pigment & Resin Technology, 43 (2014) pp.151-158.
[14] R. Patterson, C. Zeiss, D. Roxe, J.J. Pruzansky, M. Roberts, K.E. Harris,Antibodies in hemodialysis patients against hapten-protein and hapten-erythrocytes, J Lab Clin Med, 96 (1980) pp.347-355.
[15] S. Bansal, P. Ponnan, H.G. Raj, S.T. Weintraub, M. Chopra, R. Kumari, D. Saluja, A. Kumar, T.K. Tyagi, P. Singh,Autoacetylation of purified calreticulin transacetylase utilizing acetoxycoumarin as the acetyl group donor, Applied biochemistry and biotechnology, 157 (2009) pp.285-298.
[16] http://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI:37952.
[17] M. Wang, L. Wang, Y. Huang,Electrospun hydroxypropyl methyl cellulose phthalate (HPMCP)/erythromycin fibers for targeted release in intestine, Journal of applied polymer science, 106 (2007) pp.2177-2184.
[18] H.J. Park, G.H. Lee, J.-H. Jun, M. Son, Y.S. Choi, M.-K. Choi, M.J. Kang,Formulation and in vivo evaluation of probiotics-encapsulated pellets with hydroxypropyl methylcellulose acetate succinate (HPMCAS), Carbohydrate polymers, 136 (2016) pp.692-699.
[19] A. Madhankumar, S. Nagarajan, N. Rajendran, T. Nishimura,EIS evaluation of protective performance and surface characterization of epoxy coating with aluminum nanoparticles after wet and dry corrosion test, Journal of Solid State Electrochemistry, 16 (2012) pp.2085-2093.
[20] K.-C. Chang, M.-H. Hsu, H.-I. Lu, M.-C. Lai, P.-J. Liu, C.-H. Hsu, W.-F. Ji, T.-L. Chuang, Y. Wei, J.-M. Yeh,Room-temperature cured hydrophobic epoxy/graphene composites as corrosion inhibitor for cold-rolled steel, Carbon, 66 (2014) pp.144-153.
[21] M.-Y. Jiang, L.-K. Wu, J.-M. Hu, J.-Q. Zhang,Silane-incorporated epoxy coatings on aluminum alloy (AA2024). Part 1: Improved corrosion performance, Corrosion Science, 92 (2015) pp.118-126.
[22] M.-Y. Jiang, L.-K. Wu, J.-M. Hu, J.-Q. Zhang,Silane-incorporated epoxy coatings on aluminum alloy (AA2024). Part 2: Mechanistic investigations, Corrosion Science, 92 (2015) pp.127-135.
[23] I. Arukalam,Durability and synergistic effects of KI on the acid corrosion inhibition of mild steel by hydroxypropyl methylcellulose, Carbohydrate polymers, 112 (2014) pp.291-299.
[24] 田福助, 電化學理論與應用, 新科技書局, 台灣.
[25] 莊東漢, 材料分析與檢測實驗, 五南圖書出版股份有限公司, 台灣.
[26] J.-B. Jorcin, M.E. Orazem, N. Pébère, B. Tribollet,CPE analysis by local electrochemical impedance spectroscopy, Electrochimica Acta, 51 (2006) pp.1473-1479.
[27] M. Zheludkevich, R. Serra, M. Montemor, K. Yasakau, I.M. Salvado, M. Ferreira,Nanostructured sol–gel coatings doped with cerium nitrate as pre-treatments for AA2024-T3: corrosion protection performance, Electrochimica Acta, 51 (2005) pp.208-217.
[28] K.S. Jacob, G. Parameswaran,Corrosion inhibition of mild steel in hydrochloric acid solution by Schiff base furoin thiosemicarbazone, Corrosion Science, 52 (2010) pp.224-228.
[29] L. Freire, M. Carmezim, M. Ferreira, M. Montemor,The electrochemical behaviour of stainless steel AISI 304 in alkaline solutions with different pH in the presence of chlorides, Electrochimica Acta, 56 (2011) pp.5280-5289.
[30] M. Hosseini, S.F. Mertens, M. Ghorbani, M.R. Arshadi,Asymmetrical Schiff bases as inhibitors of mild steel corrosion in sulphuric acid media, Materials Chemistry and Physics, 78 (2003) pp.800-808.
[31] H. Ashassi-Sorkhabi, B. Shaabani, D. Seifzadeh,Effect of some pyrimidinic Shciff bases on the corrosion of mild steel in hydrochloric acid solution, Electrochimica Acta, 50 (2005) pp.3446-3452.
[32] F. Tajarobi, A. Larsson, H. Matic, S. Abrahmsén-Alami,The influence of crystallization inhibition of HPMC and HPMCAS on model substance dissolution and release in swellable matrix tablets, European Journal of Pharmaceutics and Biopharmaceutics, 78 (2011) pp.125-133.
[33] A. Gazzaniga, L. Palugan, A. Foppoli, M.E. Sangalli,Oral pulsatile delivery systems based on swellable hydrophilic polymers, European Journal of Pharmaceutics and Biopharmaceutics, 68 (2008) pp.11-18.
[34] P. Colombo, R. Bettini, P. Santi, N.A. Peppas,Swellable matrices for controlled drug delivery: gel-layer behaviour, mechanisms and optimal performance, Pharmaceutical science & technology today, 3 (2000) pp.198-204.
[35] D. Phan, T. Häger, W. Hofmeister,The influence of the Fe2O3 content on the Raman spectra of sapphires, Journal of Raman Spectroscopy, 48 (2017) pp.453-457.
[36] M. Hanesch,Raman spectroscopy of iron oxides and (oxy) hydroxides at low laser power and possible applications in environmental magnetic studies, Geophysical Journal International, 177 (2009) pp.941-948.
[37] S. Tambe, S. Singh, M. Patri, D. Kumar,Effect of pigmentation on mechanical and anticorrosive properties of thermally sprayable EVA and EVAl coatings, Progress in Organic Coatings, 72 (2011) pp.315-320.
[38] S. Haruyama, M. Asari, T. Tsuru,Corrosion protection by organic coatings, Electrochemical Society (ECS) Proceedings, (1987) pp.197-207.
[39] C.M. Gore, J.O. White, E.D. Wachsman, V. Thangadurai,Effect of composition and microstructure on electrical properties and CO 2 stability of donor-doped, proton conducting BaCe 1−(x+ y) Zr x Nb y O 3, Journal of Materials Chemistry A, 2 (2014) pp.2363-2373.
[40] Q. Li, V. Thangadurai,A comparative 2 and 4-probe DC and 2-probe AC electrical conductivity of novel co-doped Ce 0.9− x RE x Mo 0.1 O 2.1–0.5 x (RE= Y, Sm, Gd; x= 0.2, 0.3), Journal of Materials Chemistry, 20 (2010) pp.7970-7983.
[41] Q. Li, V. Thangadurai,Synthesis, Structure and Electrical Properties of Mo‐doped CeO2–Materials for SOFCs, Fuel Cells, 9 (2009) pp.684-698.
[42] E. Chinarro, J. Jurado, F. Figueiredo, J. Frade,Bulk and grain boundary conductivity of Ca 0.97 Ti 1− xFexO 3− δ materials, Solid State Ionics, 160 (2003) pp.161-168.
[43] P. Hjalmarsson, M. Søgaard, M. Mogensen,Electrochemical behaviour of (La 1− x Sr x) s Co 1− y Ni y O 3− δ as porous SOFC cathodes, Solid State Ionics, 180 (2009) pp.1395-1405.