簡易檢索 / 詳目顯示

研究生: 陳柏任
Chen, Po-Jen
論文名稱: 以數值模擬探討鋁合金熱軋過程溫度對集合組織演化之影響
Numerical Modeling of Through-Rolling Temperature on Texture Evolution in Hot-Rolled Aluminum Alloys
指導教授: 郭瑞昭
Kuo, Jui-Chao
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 194
中文關鍵詞: 鋁合金熱軋晶體塑性模擬非八面體滑移系統應變速率敏感性集合組織演化
外文關鍵詞: Aluminum alloys, Hot-rolling, Crystal plasticity, Non-octahedral slip systems, Strain rate sensitivity, Texture evolution
相關次數: 點閱:61下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要 I Extended Abstract III 誌謝 XVII 目錄 XX 表目錄 XXIV 圖目錄 XXVI 第一章 前言 1 第二章 文獻回顧 3 2.1 晶體塑性理論模型與應變硬化理論模型 3 2.1.1 Taylor與Bishop-Hill塑性理論 3 2.1.2 速率敏感度之塑性模型 21 2.1.3 溫度與速率敏感度之影響 24 2.1.4 應變硬化理論 28 2.2 熱軋加工對鋁合金集合組織演化之影響 32 2.2.1 熱軋加工之鋁合金微觀結構與集合組織 32 2.2.2 鋁合金之高溫非八面體滑移系統 40 第三章 鋁合金熱軋速率敏感性塑性模型(Rate-sensitive SC model) 43 3.1 熱軋數值模擬之參數 43 3.1.1 熱軋數值模型之邊界條件 45 3.1.2 高溫滑移系統 47 3.1.3 速率敏感度指數 50 3.1.4 應變硬化參數 52 3.2 鋁合金熱軋數值模型之建立 56 第四章 熱軋數值模擬結果 60 4.1 300 °C下速率敏感性模型模擬結果 61 4.1.1 應力應變行為 61 4.1.2 集合組織演化 64 4.2 350 °C下速率敏感性模型模擬結果 69 4.2.1 應力應變行為 69 4.2.2 集合組織演化 72 4.3 450 °C下速率敏感性模型模擬結果 78 4.3.1 應力應變行為 78 4.3.2 集合組織演化 81 4.4 比較不同模擬模型 87 4.4.1 速率不敏感模型之結果 87 4.4.2 修正速率敏感性模型之比較結果 95 第五章 討論 102 5.1 數值模擬參數對於流變應力之影響 102 5.2 速率敏感性之影響 105 5.3 高溫非八面體滑移系統之影響 111 5.4 高溫集合組織演化機制 118 第六章 結論 149 參考文獻 151

    1. J.P. Hirth, J. Lothe, and T. Mura, Theory of Dislocations (2nd ed.). Journal of Applied Mechanics, 1983. 50(2): p. 476-477.
    2. H. Hu, Texture of Metals. Texture, Stress, and Microstructure, 1974. 1(4): p. 233-258.
    3. R. Le Hazif, P. Dorizzi Et, and J.P. Poirier, Glissement {110} 〈110〉 dans les metaux de structure cubique a faces centrees. Acta Metallurgica, 1973. 21(7): p. 903-911.
    4. R. Le Hazif and J.-P. Poirer, Cross-slip on {110} planes in aluminum single crystals compressed along 〈100〉 axis. Acta Metallurgica, 1975. 23(7): p. 865-871.
    5. S.B. Brown, K.H. Kim, and L. Anand, An internal variable constitutive model for hot working of metals. International Journal of Plasticity, 1989. 5(2): p. 95-130.
    6. G.I. Taylor, Plastic Strain in Metals. Journal of the Institute of Metals, 1938. 62: p. 307-324.
    7. J.F.W. Bishop and R. Hill, CXXVIII. A theoretical derivation of the plastic properties of a polycrystalline face-centred metal. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1951. 42(334): p. 1298-1307.
    8. J.F.W. Bishop and R. Hill, XLVI. A theory of the plastic distortion of a polycrystalline aggregate under combined stresses. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1951. 42(327): p. 414-427.
    9. P. Van Houtte and E. Aernoudt, Considerations on the crystal and the strain symmetry in the calculation of deformation textures with the taylor theory. Materials Science and Engineering, 1976. 23(1): p. 11-22.
    10. P. Van Houtte, On the equivalence of the relaxed Taylor theory and the Bishop-Hill theory for partially constrained plastic deformation of crystals. Materials Science and Engineering, 1982. 55(1): p. 69-77.
    11. J.W. Hutchinson, Bounds and self-consistent estimates for creep of polycrystalline materials. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1976. 348(1652): p. 101-127.
    12. U.F. Kocks, The relation between polycrystal deformation and single-crystal deformation. Metallurgical Transactions, 1970. 1(5): p. 1121-1143.
    13. G.Y. Chin and W.L. Mamme, Part VI – June 1969 - Papers - Generalization and Equivalence of the Minimum Work (Taylor) and Maximum Work (Bishop-Hill) Principles for Crystal Plasticity. 1970, The American Institute of Mining, Metallurgical, and Petroleum Engineers.
    14. G.Y. Chin, E.A. Nesbitt, and A.J. Williams, Anisotropy of strength in single crystals under plane strain compression. Acta Metallurgica, 1966. 14(4): p. 467-476.
    15. U.F. Kocks, G.R. Canova, and J.J. Jonas, Yield vectors in f.c.c. crystals. Acta Metallurgica, 1983. 31(8): p. 1243-1252.
    16. P. Lequeu, P. Gilormini, F. Montheillet, B. Bacroix, and J.J. Jonas, Yield surfaces for textured polycrystals—I. Crystallographic approach. Acta Metallurgica, 1987. 35(2): p. 439-451.
    17. B. Bacroix and J.J. Jonas, The Influence of Non‐Octahedral Slip on Texture Development in FCC Metals. Texture, Stress, and Microstructure, 1988. 8(1): p. 267-311.
    18. D. Peirce, R.J. Asaro, and A. Needleman, Material rate dependence and localized deformation in crystalline solids. Acta Metallurgica, 1983. 31(12): p. 1951-1976.
    19. L.S. Tóth, P. Gilormini, and J.J. Jonas, Effect of rate sensitivity on the stability of torsion textures. Acta Metallurgica, 1988. 36(12): p. 3077-3091.
    20. Y. Zhou, K.W. Neale, and L.S. Tóth, A modified model for simulating latent hardening during the plastic deformation of rate-dependent FCC polycrystals. International Journal of Plasticity, 1993. 9(8): p. 961-978.
    21. K. Sekine and H. Inoue, A Generalization of the Taylor-Bishop-Hill Theories and the Rate-dependent Slip Model in Crystal Plasticity. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 1999. 85: p. 394-398.
    22. R. Fortunier and J.H. Driver, A continuous constraints model for large strain grain deformations. Acta Metallurgica, 1987. 35(2): p. 509-517.
    23. C. Maurice, J.H. Driver, and L.S. Tóth, Modelling High Temperature Rolling Textures of FCC Metals. Textures and Microstructures, 1992. 19: p. 129136.
    24. U.F. Kocks, Constitutive Behavior Based on Crystal Plasticity, in Unified Constitutive Equations for Creep and Plasticity, A.K. Miller, Editor. 1987, Springer Netherlands: Dordrecht. p. 1-88.
    25. S.R. Chen and U.F. Kocks, Texture and microstructure development in Al-2%Mg during high- temperature deformation, in Conference: Hot deformation of aluminum alloys metallurgical society conference, Detroit, MI (Cuba). 1990, Los Alamos National Lab., NM (USA). p. Medium: ED; Size: Pages: (17 p).
    26. F. Montheillet and J.J. Jonas, Temperature dependence of the rate sensitivity and its effect on the activation energy for high-temperature flow. Metallurgical and Materials Transactions A, 1996. 27(10): p. 3346-3348.
    27. A. Chapuis and Q. Liu, Modeling strain rate sensitivity and high temperature deformation of Mg-3Al-1Zn alloy. Journal of Magnesium and Alloys, 2019. 7(3): p. 433-443.
    28. E. Voce, A practical strain hardening function. Metallurgia, 1955. 51: p. 219-226.
    29. C. Tome, G.R. Canova, U.F. Kocks, N. Christodoulou, and J.J. Jonas, The relation between macroscopic and microscopic strain hardening in F.C.C. polycrystals. Acta Metallurgica, 1984. 32(10): p. 1637-1653.
    30. R. Abbaschian and R.E. Reed-Hill, Physical Metallurgy Principles - SI Version. 2009: Cengage Learning.
    31. 毛卫民, 金属材料的晶体学织构与各向异性. 2002: 科学出版社.
    32. C. Maurice and J.H. Driver, Hot rolling textures of f.c.c. metals—Part I. Experimental results on Al single and polycrystals. Acta Materialia, 1997. 45(11): p. 4627-4638.
    33. B. Ren and J.G. Morris, Microstructure and texture evolution of Al during hot and cold rolling. Metallurgical and Materials Transactions A, 1995. 26(1): p. 31-40.
    34. O. Dalland and E. Nes, Origin of cube texture during hot rolling of commercial Al-Mn-Mg alloys. Acta Materialia, 1996. 44(4): p. 1389-1411.
    35. C. Maurice and J.H. Driver, Hot rolling textures of f.c.c. metals—Part II. Numerical simulations. Acta Materialia, 1997. 45(11): p. 4639-4649.
    36. F.D. Rosi and C.H. Mathewson, A study of the plastic behavior of high-purity aluminum single crystals at various temperatures. JOM, 1950. 2(9): p. 1159-1167.
    37. M. Carrard and J.L. Martin, II. Microscopic mechanism. Philosophical Magazine A, 1988. 58(3): p. 491-505.
    38. D. Caillard and J.-L. Martin, Glide of Dislocations in non-octahedral Planes of FCC Metals: A Review. International Journal of Materials Research (formerly Zeitschrift fuer Metallkunde), 2009. 100.
    39. A. Couret and D. Caillard, Microscopic observations of glide in non close-packed planes in aluminium, and comparison with magnesium. Acta Metallurgica, 1988. 36(9): p. 2515-2524.
    40. F. Perocheau and J.H. Driver, Slip system rheology of Al–1% Mn crystals deformed by hot plane strain compression. International Journal of Plasticity, 2002. 18(2): p. 185-202.
    41. G. Falkinger and S. Mitsche, Numerical investigation of the effect of rate-sensitivity, non-octahedral slip and grain shape on texture evolution during hot rolling of aluminum alloys. Modelling and Simulation in Materials Science and Engineering, 2021. 29(1): p. 015006.
    42. E. Cantergiani, M. Riedel, K.F. Karhausen, F. Roters, A. Quadfasel, G. Falkinger, O. Engler, and R. Rabindran, Simulations of Texture Evolution in the Near-Surface Region During Aluminum Rolling. Metallurgical and Materials Transactions A, 2024. 55(9): p. 3327-3350.
    43. 蕭世杰, 探討泰勒模型模擬和實驗間冷軋純銅優選方位強度差異之研究, 成功大學材料科學及工程學系學位論文, 2018.
    44. 林昕瑩, 以泰勒模型模擬雙晶-基材薄層對低疊差能F.C.C.金屬軋延織構之影響, 成功大學材料科學及工程學系學位論文, 2019.
    45. F.J. Humphreys and M. Hatherly, Chapter 3 - Deformation Textures, in Recrystallization and Related Annealing Phenomena (Second Edition), F.J. Humphreys and M. Hatherly, Editors. 2004, Elsevier: Oxford. p. 67-89.

    無法下載圖示 校內:2030-07-24公開
    校外:2030-07-24公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE