| 研究生: |
黃美葳 Huang, Mei-Wei |
|---|---|
| 論文名稱: |
使用Metal-Silicate為原料合成出MOF/silica複合孔洞材料及探討SBA-16孔洞材料對液晶光電行為之效應 Synthesis of MOF/silica Materials Using Metal-silicate as Precursor and Investigation into Effect of SBA-16 Mesoporous Silica on Electro-Optical Behavior of Liquid Crystal |
| 指導教授: |
林弘萍
Lin, Hong-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | ZIF-67/silica複合材料 、Cu3(BTC)2/silica複合材料 、SBA-16晶體材料 、5CB液晶 |
| 外文關鍵詞: | ZIF-67, Cu3(BTC)2, dye molecules, SBA-16 crystal, 5CB liquid crystals, electro optical behavior |
| 相關次數: | 點閱:112 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
第一部分 ZIF-67/silica以及Cu3(BTC)2/silica複合材料的合成及應用
在本研究中,利用異相成核及剝蝕法分別以CoCl2及CuSO4製成Co-silicate和Cu-silicate,再利用有機螯合物在不同酸鹼值下所帶電荷不同,進而與metal silicate上的金屬離子進行螯合,形成ZIF-67/silica以及Cu3(BTC)2/silica複合孔洞材料。而這兩種材料的比表面積皆可達到800-900 m2g-1,且其皆是具有微孔特性的中孔洞材料,因其孔洞結構提供來源為MOF結構本身微孔及silica本身的中恐結構。利用ZIF-67/silica複合材料本身ZIF-67上帶有的鹼性位而能吸附CO2氣體,且最佳能達到1.592 mmol•g-1的吸附量;另外也將ZIF-67/silica及Cu3(BTC)2/silica同時吸附甲基橙(帶負電)和亞甲基藍(帶正電)染料溶液,兩種MOF/silica材料吸附染料的效果都十分顯著,另外也發現由於孔洞材料結構所帶電荷不相同,因此對於帶有正負電荷之染料溶液具有不同的吸附行為。
第二部分 SBA-16混和PMMA球的合成及液晶智慧玻璃窗之應用
在本研究中,利用三種界面活性劑(C8TMAB-F127-SDS)來合成具有整齊排列孔洞性質的SBA-16,為了要確保SBA-16晶體結構的穩定度,會利用水熱反應來改善此結果。但由於SBA-16晶體的孔體積密度過大,在後續混入5CB液晶分子後會有沉澱分離的現象,使之沒有良好的應用性。因此選擇混入PMMA球於合成組成中,提高孔隙度,藉此能合成出具有表面積900 m2g-1左右、整齊排列孔洞之空心結構,使液晶分子能夠完整的混和均勻。隨後再進行表面修飾,使得材料表面的疏水官能基能夠與液晶分子達到均勻分散效果,藉此去改變液晶的排列方向,並組裝成可利用電場控制液晶顯示器明暗度變化之顯示器。而當不完整的空心結構比例較多時,會使得移除電壓控制後,液晶顯示器直接變回霧態且容易亮度不均或是亮度不足的問題。
The research is composed of two parts. First, the Co-silicate and Cu-silicate use as template and the mixed with 2-methylimidazole and 1,3,5-benzenetricarboxylic, respectively. The SEM images showed that the ZIF-67/silica and Cu3(BTC)2/silica crystal size is ranging from 50 nm to 200 nm. In addition, the prepared ZIF-67/silica and Cu3(BTC)2/silica both have high surface area (the BET surface area around 800 m2g-1), and high thermal stability (decomposition temperature around 400 ℃ under N2 and air). These two types of MOF/silica have the selectivity to adsorb cationic and anionic dye molecules.
Second, a ternary-surfactant system (C8TMAB-F127-SDS) is used as an organic template to synthesize SBA-16 mesoporous silica crystals through TEOS silica self-assembly in acidic solution. To produce more hollow structure in the SBA-16 solid materials, the PMMA organic beads is added to the reaction solution. The SBA-16 solid crystals and SBA-16 with hollow structure are separately mixed with 5CB liquid crystals to study the electro-optical behavior of liquid crystals. The SBA-16 with hollow structure can blend with 5CB liquid crystals evenly, and the result also shows that it has well transparency range than the SBA-16 crystals.
(1) Kresge, C.; Leonowicz, M.; Roth, W. J.; Vartuli, J.; Beck, J. nature 1992, 359, 710.
(2) Gibson, L. Chemical Society Reviews 2014, 43, 5163.
(3) Everett, D. Pure and Applied Chemistry 1972, 31, 577.
(4) Wang, W.; Xie, S.; Zhou, W.; Sayari, A. Chemistry of materials 2004, 16, 1756.
(5) Fan, J.; Yu, C.; Gao, F.; Lei, J.; Tian, B.; Wang, L.; Luo, Q.; Tu, B.; Zhou, W.; Zhao, D. Angewandte Chemie 2003, 115, 3254.
(6) Vinu, A.; Murugesan, V.; Hartmann, M. Chemistry of materials 2003, 15, 1385.
(7) Lin, H. P.; Tang, C. Y.; Lin, C. Y. Journal of the Chinese Chemical Society 2002, 49, 981.
(8) Alfredsson, V.; Anderson, M. W. Chemistry of materials 1996, 8, 1141.
(9) Lin, H.-P.; Mou, C.-Y. Accounts of chemical research 2002, 35, 927.
(10) Kim, J. M.; Sakamoto, Y.; Hwang, Y. K.; Kwon, Y.-U.; Terasaki, O.; Park, S.-E.; Stucky, G. D. The Journal of Physical Chemistry B 2002, 106, 2552.
(11) Bhaumik, A.; Inagaki, S. Journal of the American Chemical Society 2001, 123, 691.
(12) Zhang, Z.; Han, Y.; Zhu, L.; Wang, R.; Yu, Y.; Qiu, S.; Zhao, D.; Xiao, F. S. Angewandte Chemie International Edition 2001, 40, 1258.
(13) Walcarius, A.; Etienne, M.; Lebeau, B. Chemistry of materials 2003, 15, 2161.
(14) Yokoi, T.; Yoshitake, H.; Tatsumi, T. Chemistry of materials 2003, 15, 4536.
(15) Tian, Z. R.; Liu, J.; Voigt, J. A.; Mckenzie, B.; Xu, H. Angewandte Chemie International Edition 2003, 42, 413.
(16) Zhong, Z.; Yin, Y.; Gates, B.; Xia, Y. Advanced Materials 2000, 12, 206.
(17) Li, F. Manipulating colloids and surfactants as co-templates for porous nanostructures and nanocomposites; University of Minnesota, 2010.
(18) Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. Science 2013, 341, 1230444.
(19) Danaci, D.; Singh, R.; Xiao, P.; Webley, P. A. Chemical Engineering Journal 2015, 280, 486.
(20) Park, K. S.; Ni, Z.; Côté, A. P.; Choi, J. Y.; Huang, R.; Uribe-Romo, F. J.; Chae, H. K.; O’Keeffe, M.; Yaghi, O. M. Proceedings of the National Academy of Sciences 2006, 103, 10186.
(21) Schejn, A.; Balan, L.; Falk, V.; Aranda, L.; Medjahdi, G.; Schneider, R. CrystEngComm 2014, 16, 4493.
(22) Wu, H.; Zhou, W.; Yildirim, T. Journal of the American Chemical Society 2007, 129, 5314.
(23) Chen, B.; Yang, Z.; Zhu, Y.; Xia, Y. Journal of Materials Chemistry A 2014, 2, 16811.
(24) Cacho-Bailo, F.; Seoane, B.; Téllez, C.; Coronas, J. Journal of Membrane Science 2014, 464, 119.
(25) Kalidindi, S. B.; Esken, D.; Fischer, R. A. Chemistry-A European Journal 2011, 17, 6594.
(26) Zhan, W.-w.; Kuang, Q.; Zhou, J.-z.; Kong, X.-j.; Xie, Z.-x.; Zheng, L.-s. Journal of the American Chemical Society 2013, 135, 1926.
(27) Sun, C.-Y.; Qin, C.; Wang, X.-L.; Yang, G.-S.; Shao, K.-Z.; Lan, Y.-Q.; Su, Z.-M.; Huang, P.; Wang, C.-G.; Wang, E.-B. Dalton Transactions 2012, 41, 6906.
(28) Chui, S. S.-Y.; Lo, S. M.-F.; Charmant, J. P.; Orpen, A. G.; Williams, I. D. Science 1999, 283, 1148.
(29) Liu, Y. D.; Kim, J.; Ahn, W.-S.; Choi, H. J. Chemical Communications 2012, 48, 5635.
(30) Tadros, T. F. Some applications of surfactants in biological systems; Academic Press, London, 1984.
(31) Lindman, B.; Wennerstrom, H. Micelles Amphiphile Aggregation in Aqueous Solution. Springer Verlag, Heidelberg 1980, 1.
(32) Israelachvili, J.; Marčelja, S.; Horn, R. G. Quarterly reviews of biophysics 1980, 13, 121.
(33) Mithchell, D.; Ninham, B. J. Chem. Soc., Faraday, Trans. II 1981, 77, 1264.
(34) Manaargadoo-Catin, M.; Ali-Cherif, A.; Pougnas, J.-L.; Perrin, C. Advances in colloid and interface science 2016, 228, 1.
(35) Zhao, D.; Huo, Q.; Feng, J.; Chmelka, B. F.; Stucky, G. D. Journal of the American Chemical Society 1998, 120, 6024.
(36) Huo, Q.; Margolese, D. I.; Ciesla, U.; Demuth, D. G.; Feng, P.; Gier, T. E.; Sieger, P.; Firouzi, A.; Chmelka, B. F. Chemistry of Materials 1994, 6, 1176.
(37) Brinker, C. J.; Scherer, G. W. Journal of Non-Crystalline Solids 1985, 70, 301.
(38) Aelion, R.; Loebel, A.; Eirich, F. Journal of the American chemical society 1950, 72, 5705.
(39) 張家勝 成功大學化學系學位論文 2013, 1.
(40) 林勺乃, National Cheng Kung University Department of Chemistry, 2015.
(41) Berreman, D. W. JOSA 1973, 63, 1374.
(42) Lovinger, A. J.; Amundson, K. R.; Davis, D. D. Chemistry of materials 1994, 6, 1726.
(43) Ribeiro, B. A.; Ribeiro, R. M.; Silva, V. N.; Barbero, A. P.; Xavier, O. S.
(44) Baetens, R.; Jelle, B. P.; Gustavsen, A. Solar Energy Materials and Solar Cells 2010, 94, 87.
(45) Liu, J.; Chen, L.; Cui, H.; Zhang, J.; Zhang, L.; Su, C.-Y. Chemical Society Reviews 2014, 43, 6011.
(46) Sachse, A.; Ameloot, R.; Coq, B.; Fajula, F.; Coasne, B.; De Vos, D.; Galarneau, A. Chemical Communications 2012, 48, 4749.
(47) Mousavi, B.; Chaemchuen, S.; Moosavi, B.; Luo, Z.; Gholampour, N.; Verpoort, F. New Journal of Chemistry 2016, 40, 5170.
(48) Hu, J.; Dai, W.; Yan, X. Desalination and Water Treatment 2016, 57, 4081.
(49) Qin, J.; Wang, S.; Wang, X. Applied Catalysis B: Environmental 2017, 209, 476.
(50) Du, X.-D.; Wang, C.-C.; Liu, J.-G.; Zhao, X.-D.; Zhong, J.; Li, Y.-X.; Li, J.; Wang, P. Journal of colloid and interface science 2017, 506, 437.
(51) Qian, J.; Sun, F.; Qin, L. Materials Letters 2012, 82, 220.
(52) Banerjee, R.; Phan, A.; Wang, B.; Knobler, C.; Furukawa, H.; O'keeffe, M.; Yaghi, O. M. Science 2008, 319, 939.
(53) Yu, C.; Tian, B.; Fan, J.; Stucky, G. D.; Zhao, D. Journal of the American Chemical Society 2002, 124, 4556.