| 研究生: |
林昱勳 Lin, Yu-Hsun |
|---|---|
| 論文名稱: |
多參考點最小二乘複頻域法於模態干涉系統之模態參數識別研究 Identification of Modal Parameters of Systems with Modal Interference by Polyreference Least Squares Complex Frequency Domain Method |
| 指導教授: |
江達雲
Chiang, Dar-Yun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 模態干涉 、頻率響應函數 、矩陣分式 、穩定圖 |
| 外文關鍵詞: | modal interference, frequency response function, matrix fraction, stabilization diagram |
| 相關次數: | 點閱:150 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在模態識別的過程中,當系統具有高阻尼比及相近模態時,會因模態干涉而影響識別精度。本文主要探討頻域之模態參數識別,針對前人提出的多參考點最小二乘複頻域法進行研究,並在作法上進行改良。根據結構動力學的理論,頻響函數可以表示成有理分式的型式;利用響應資料曲線擬合成有理分式形式,再以擬合之有理分式係數計算出模態參數。由於傳統純量模型只對單一頻響函數識別,無法獲得振型資訊;因此本文使用矩陣係數之有理分式建構系統的頻響函數矩陣進行模態識別,取代純量係數表示的有理分式模型。此外,為了避免在模態干涉下進行系統識別發生模態遺漏,吾人提高有理分式模型中分子及分母項的階數進行計算;然而卻衍生出虛假模態。吾人藉由不同階數計算的模態建立穩定圖,可從數值的穩定性來區分結構與虛假模態。數值模擬結果顯示,本文所提出方法在系統具有模態干涉與含雜訊的情況下仍具有良好精確性與強健性。
In the process of modal identification, when a system has close modes or high damping, the accuracy of results of identification may be poor due to modal interference. In this thesis, we mainly study the modal identification in frequency domain and improve polyreference least squares complex frequency domain method. According to the theory of structural dynamics, frequency response function can be expressed as a rational function form. By using the curve fitting technique, the response data can be expressed in rational fraction form, the modal parameters can be obtained from rational fractional coefficients. The conventional common denominator model only indicates the SDOF frequency response function, so it cannot acquire the mode shape information. In this thesis, we proposed the matrix-fractional coefficients model to perform modal identification through MDOF frequency response functions simultaneously. To avoid the phenomenon of omitted modes during the process of modal identification of systems with modal interference, we employ a higher-order model to perform modal identification, but fictitious modes may be caused by the numerical computation. The system and fictitious modes can be separated by using the different-order constructed stabilization diagram. Numerical simulations confirm the validity and robustness of the proposed modal-identification method for a system with modal interference under noisy conditions.
[1]Caughey, T.K. and Okely, M.E., “Classical normal modes in damped linear dynamic system”, Journal of Applied Mechanics, Volume 32, pp. 583-588, 1965.
[2]Clough, C.W. and Penzien, J. Dynamic of structure, 2nd ed. McGram-Hill. Inc, 1993.
[3]Ewins, D.J., Modal Testing: Theory and Practice, Research Studies Press, 1995.
[4]Kennedy, S.R. and Pancu, C.D.P., “Use of Vectors in Vibration Measurement and Analysis”, Journal of Aeronautics Sciences, Volume 14, No.11, pp. 603-625, 1974.
[5]Hougen, J.O. and Walsh, R. A., “Pulse Testing Method”, Chemical Engineering Progress, Vol.57, No.3, pp. 69-79, 1961.
[6]Brigham, E.O., The Fast Fourier Transform, Prentice-Hall, 1974.
[7]Spitznogle, F.R. and Quazi, A.H. “Representation and Analy-sis of Time-Limited Signalsusing a Complex Exponential Al-gorithm”, Journal of the Acoustical Society of America, Vol. 47, No. 5, pp. 1150–1155, 1970.
[8]Smith, W.R., “Least Squares Time-Domain Methods for Sim-ultaneous Identification of Vibration Parameters from Multiple Free-Response Records”, AIAA/ASME/ASCE/AHS 22nd SDM Conference, pp. 194–201, April, 1981.
[9]Vold, H., Kundrat, J., Rocklin, G.T. and Russell. R., “A Mul-ti-Input Modal Estimation Algorithm for Mini-Computers”, SAE Technical Paper Series, No. 820–194, 1982.
[10]Van der Auweraer, H., Guillaume, P., Verboven, P. and Van-landuit, S., “Application of a fast-stabilizing frequency domain parameter estimation method”, Journal of Dynamic Systems Measurement and Control – Transactions of the ASME, pp. 651-658, 2001.
[11]Guillaume, P., Verboven, P., Vanlanduit, S., Van Der Auweraer, H. and Peeters, B., “A Poly-Reference Implementation of the Least-Squares Complex Frequency-Domain Estimator”, In-ternational Modal Analysis Conference (IMAC XXI), Kissimmee, Florida, 2003.
[12]Van der Auweraer, H. and Peeters, B., “Discriminating Physi-cal Poles from Mathematical Poles in High Order Systems: Use and Automation of the Stabilization Diagram”, Proceedings of the IEEE Instrumentation and Measurement Technology Con-ference, Como, Italy, May, pp. 2193–2198, 2004.
[13]陳曉平, 線性系統理論, 北京清華大學出版社, 2005.
[14]Richardson, M.H. and Formenti, D.L., “Parameter estimation from frequency response measurements using rational fraction polynomials”, Proceedings of the 1st International Modal Analysis Conference, Orlando, Florida, November 8-10, 1982.
[15]Srikantha Phani, A., “On the necessary and sufficient condi-tions for the existence of classical normal modes in damped liner dynamic systems”, Journal of Sound and Vibration, Volume 264, pp. 741-745, 2003.
[16]Kirshenboim, J., “Real vs. complex mode shapes”, Proceedings of the 5th International Modal Analysis Conference, London, England, pp. 1594-1599, 1987.
[17]Wei, M.L., Allemang, R.J. and Brown, D.L., “Re-al-Normalization of measured complex modes”, Proceedings of 5th International Modal Analysis Conference, London, England, pp. 708-712, 1987.
[18]黃煜程, “結構系統模態干涉指標之研究”, 碩士論文, 國立 成功大學航空太空工程學系研究所, 2012.
[19]郭力文, “具有高度模態干涉結構系統之模態參數識別研究”, 碩士論文, 國立成功大學航空太空工程學系研究所, 2014.
[20]林宇哲, “亞伯拉罕時域法於具模態干涉之系統模態參數識別”, 碩士論文, 國立成功大學航空太空工程學系研究所, 2016.
[21]鄧國綱, “最小二乘法在頻域模態參數識別之研究”, 碩士論文, 國立成功大學航空太空工程學系研究所, 2013.
[22]Henrion, D. and Sebek, M., “Polynomial and Matrix Fraction Description”, Retrieved from:
https://homepages.laas.fr/henrion/Papers/6-43-13-5.pdf