簡易檢索 / 詳目顯示

研究生: 羅仁華
Lo, Jen-Hua
論文名稱: 後退火處理對鎵、鈷共摻雜氧化鋅磁電性之研究
The annealing effect on magnetic and electric property of (Ga,Co) co-doped ZnO
指導教授: 黃榮俊
Huang, J. C. A.
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 89
中文關鍵詞: 後退火氧化鋅
外文關鍵詞: annealing, Gallium, ZnO
相關次數: 點閱:103下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文利用離子束濺射系統成長Ga、Co共摻雜ZnO,並且利用快速熱退火(Rapid Thermal Annealing,RTA)後置處理,探討其磁性、電性及結構上之變化。實驗分為兩個部分,首先以Co摻雜ZnO薄膜和Co摻雜GZO(4wt%Ga2O3:96wt%ZnO)做比較,從結構上看來並沒有二次相(secondary phase)的產生,我們嘗試著做後置處理以釐清Ga元素置於ZnO:Co中所扮演影響著磁、電性的角色。而第二部分,則試著將Co摻雜GZO做低溫(250℃)並以不同條件下退火處理樣品,從Ga K-edge的XANES,我們發現Ga在退火前主要是以間隙位(interstitial)存在於樣品之中,而通氧退火的環境下則變成主要是取代位(substitutional) 。而似乎Ga的間隙位與磁性存在明顯的相依性,隨著退火時間拉長,無論是磁性或電性都產生有序的變化,所以,在此我們推斷此一磁性來源為間隙(interstitial) Ga的缺陷主導,我們將討論以束縛極化子模型(BMP model)或自由載子導致 (free carrier mediated) 磁性機制來解釋較為合理。

    We study Ion Beam Sputter System (IBS) prepared (Ga,Co) co-doped ZnO and rapid thermal annealing (RTA) post-treated samples. We explore the magnetic, electrical and structural variations of these samples. The work was divided into two parts. First, we studied the structure of Co doped ZnO thin films and Co doped GZO (4wt% Ga2O3: 96wt% ZnO), no secondary phase was found.
    Then we carried out post-annealing to understand the role of Ga element on the magnetic, electrical properties of (Co,Ga):ZnO. We annealed the Co doped GZO at 250℃under different conditions.From the Ga K-edge of XANES, we determined that Ga are mainly in interstitial sites before annealing and could effectively substitute Zn lattice sites in ZnO by annealing in oxygen environment. With increasing of the annealing time, both magnetic and electric properties changed in an order manner. The results suggest that this origin of the magnetism is closely related to the interstitial Gallium defects. We discussed the bound magnetic polaron model (BMP model) and free carrier mediated mechanism to account for the observed ferromagnetism.

    第一章 緒論...............................................1 1-1 前言..................................................1 1-2 氧化鋅薄膜特性簡介[1.8]...............................2 1-3 文獻回顧..............................................5 1-4 研究動機.............................................20 第二章 基本理論介紹[2.1].................................23 2-1 平均場理論(Mean Field Theory)........................23 2-2 磁性物質的種類.......................................24 2-3 磁性來源機制.........................................26 2-3.1 超交換偶合機制(superexchange interaction)[2.6].....26 2-3.2 雙交換耦合機制(Double exchange)[2.8]...............27 2-3.3 交互巡迴式鐵磁性(Itinerant Ferromagnetism)[2.12][2.13][2.14]........................29 2-3.4 侷限載子式鐵磁性(Localized Carrier)[2.16][2.17]....30 2-3.5 束縛磁極化子模型(Bound Magnetic Polaron Model)[2.18].............................................31 第三章 儀器介紹與實驗流程................................35 3-1 樣品備製.............................................35 3-1.1 離子束濺鍍系統(Ion beam sputtering ,IBS)...........35 3-1.2 快速熱退火處理裝置(Rapid Thermal Annealing, RTA)...40 3-2 實驗量測儀器.........................................42 3-2.1 X 光繞射儀(X-ray diffraction)....................42 3-2.2 吸收光譜...........................................44 3-2.3 超導量子干涉儀 (簡稱SQUID).........................56 3-2.4 霍爾效應...........................................57 3-2.5 直流電阻率量測 (DC resistivity measurement)........59 3-2.6 穿透率量測.........................................60 3-3 實驗步驟與分析.......................................61 第四章 實驗結果與討論....................................63 4-1 Zn0.95Co0.05O及Zn0.91Ga0.04Co0.05O XRD 結構分析......63 4-2 Zn0.95Co0.05O及Zn0.91Ga0.04Co0.05O 吸收光譜分析......68 4-2.1 前緣吸收光譜 (XANES)...............................68 4-2.2 延伸吸收光譜 (EXAFS)...............................74 4-3 Zn0.95Co0.05O和Zn0.91Ga0.04Co0.05O 及其後退火處理的電性分析.....................................................75 4-4 Zn0.95Co0.05O及Zn0.91Ga0.04Co0.05O 磁性分析..........77 4-5 Zn0.95Co0.05O及Zn0.91Ga0.04Co0.05O UV-Visible 分析...83 第五章 結論..............................................88

    [1.1] 半導體自旋電子學 夏建白、葛惟昆、常凱 科學出版社 p1
    [1.2] Scott A. Chambers, Surf. Sci. Rep. 61 345–381 (2006)
    [1.3] H. Ohno, A. Shen, F. Matsukura, A. Oiwa, A. Endo, S. Katsumoto, and Y.Iye App. Phy. Lett. 69, 363 (1996)
    [1.4] H. Munekata, H. Ohno, S. von Molnar, A. Segmuller, L. L. chang, and L.Esaki, Phys. Rev. Lett. 63, 1849-1852 (1989)
    [1.5] J. K. Furdyna, J. Appl. Phys. 64, R29 (1988)
    [1.6] S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, Prog. Mater. Sci. 50, 293 (2005)
    [1.7] V. Bhosle, A. Tiwari, and J. Narayan, J. Appl. Phys. 100, 033713 (2006)
    [1.8] 透明導電膜 楊明輝 藝軒圖書出版社 p67-p69
    [1.9] T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand Science 287,1019 (2000)
    [1.10] Michael Snure and Ashutosh Tiwari J. Appl. Phys. 106, 043904 (2009)
    [1.11] Kenji Ueda, Hitoshi Tabata, and Tomoji Kawaib, App. Phy. Lett. 79, 988 (2001)
    [1.12] X. C. Liu, E. W. Shi, Z. Z. Chen, H. W. Zhang, B. Xiao, and L. X. Song, App. Phy. Lett. 88, 252503 (2006)

    [1.13] A. J. Behan, A. Mokhtari, H. J. Blythe, D. Score, X-H. Xu, J. R. Neal, A. M. Fox, and G. A. Gehring, Phys.Rev. Lett. 100 047206 (2008)
    [1.14] Qingyu Xu, Lars Hartmann, Heidemarie Schmidt, Holger Hochmuth, Michael Lorenz, Rüdiger Schmidt-Grund, Chris Sturm, Daniel Spemann, and Marius Grundmann, Phys. Rev. B 73, 205342 (2006)
    [1.15] Z. L. Lu, H. S. Hsu, Y. H. Tzeng, F. M. Zhang, Y. W. Du, and J. C. A. Huang, App. Phy. Lett. 95, 102501 (2009)
    [1.16] Zhong lin Lu,Hua-Shu Hsu,Yonhua Tzeng,and Jung-Chun-Andrew Huang App. Phy. Lett. 94, 152507 (2009)
    [1.17] Zhonglin Lu,Hua-Shu Hsu,Yonhua Tzeng,Fengming Zhang, Youwei Du,and ung-Chun-Andrew Huang, App. Phy. Lett. 95, 062509 (2009)
    [1.18] Y. He,Parmanand Sharma,Krishanu Biswas, E. Z. Liu, Naofumi Ohtsu, A. Inoue, Y. Inada,M. Nomura,J. S. Tse,S. Yin,and J. Z. Jiang, Phys. Rev.B 78, 155202 (2008)
    [1.19] Xue-Chao Liu,Er-Wei Shi, Zhi-Zhan Chen,Tao Zhang, Yong Zhang,Bo-Yuan Chen,Wei Huang,Xi Liu,and Li-Xin Song, App. Phy. Lett. 92, 042502 (2008)
    [1.20] J. M. D. COEY, M. VENKATESAN AND C. B. FITZGERALD, Nature Material, 4,173 (2005)
    [2.1] T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Science, 287 1019 (2000)
    [2.2] C. Zener, Phys. Rev., 81, 440 (1951)
    [2.3] C. Kittel, Introduction of Solid State Physics, 7th ed, John Wiley & Sons inc., NewYork (1997)
    [2.4] B. D. Cullity, Introduction to Magnetic Materials, Addison Wesley , New York (1972)
    [2.5] R. C. O'Handley, Modern Magnetic Materials, John Wiley & Sons inc.(1999)
    [2.6] 聶亨芸,國立清華大學碩士論文 (2002)
    [2.7] 吳俊斌,國立中山大學物理研究所(2004)
    [2.8] Dana A.Schwartz and Daniel R.Gamelin Adv.Mater.16, 23-24 (2004)
    [2.9] C.Zener, Phy.Rev. 82,403 (1951)
    [2.10] P.W.Anderson and H.Hasegawa,Phys.Rev.100, 675 (1955)
    [2.11] D.R.Gamelin and E.L.Bominaar et al. J.Am.Chem.Soc.118 8085 (1996)
    [2.12] H.Akai, Phys.Rev.Lett.81,3002 (1998)
    [2.13] Jürgen König,Hsiu-Hau Lin, and Allan H. MacDonald, Phys.Rev.Lett.84, 5628 (2000)
    [2.14] J. König,H. H. Lin and A. H. MacDonald, Phys.Rev.Lett.86, 5637 (2001)
    [2.15] K. A. Griffin,A. B. Pakhomov,C. M. Wang,S. M. Heald, and Kannan M. Krishnan, Phys.Rev.Lett.94, 157204 (2005)
    [2.16] V. I. Litvinov and V. K. Dugaev, Phys.Rev.Lett.86,5593 (2001)
    [2.17] Mona Berciu and R. N. Bhatt, Phys.Rev.Lett.87, 107203 (2001)
    [2.18] J. M. D. COEY, M. VENKATESAN AND C. B. FITZGERALD, Nature Material,vol.4,173 (2005)
    [3.1] G.K. Wehner et al.﹐Handbook of Thin Film Technology, McGraw-Hill﹐New York (1970)
    [3.2] 薄膜科技與應用,羅吉宗,全華科技圖書股份有限公司,p4-22~p4-23
    [3.3] 王威智,中山大學物理研究所 (2002)
    [3.4]Soshin Chikazumi and Stanley H. Charap, Physics of Magnetism, (1972)
    [3.5] D.C. Koningsberger and R. Prins, X-ray Absorption Principles, applications, techniques of EXAFS, SEXAFS and XANES, 574 (1988)
    [3.6] J.J. Rehr et al.,Rev. Mod. Phys.,72, 621 (2000)
    [3.7] J.J.Rehr, C. H. Booth, F. Bridges, and S. I. Zabinsky, Phys. Rev. B,49, 12347 (1994)
    [3.8] F.Bridges, C. H. Booth,and G. G. Li, Phy. B ,208&209,121 (1995)
    [3.9] Boon K. Teo, EXAFS:Basic Principle and Data Analysis,Springer-Verlag,New York (1986)
    [3.10] D.C.Koningsberger, and R. Prins, X-Ray Absorption:Principles,
    [3.11] Application, Techniques of EXAFS, SEXAFS and XANES, John Wiley, NewYork (1988)
    [4.1] J. A. Sans, G. Martínez-Criado, J. Pellicer-Porres, J. F. Sánchez-Royo, and A. Segura, Appl. Phys. Lett.,91, 221904 (2007)
    [4.2] D Chakraborti, G R Trichy, J T Prater, and J Narayan, J. Phys. D: Appl. Phys. 40, 7606–7613, (2007)
    [4.3] Kevin R. Kittilstved, Dana A.Schwartz,Allan C. Tuan, Steve M. Heald, Scott A. Chambers, and Daniel R. Gamelin1, Phys. Rev.Lett.97, 037203 (2006)
    [4.4] Kevin R. Kittilstved, Jialong Zhao, William K. Liu, J. Daniel Bryan,Dana A. Schwartz, and Daniel R. Gamelin, Appl. Phys. Lett.89, 062510 (2006)
    [4.5] G S Chang, E Z Kurmaev, D W Boukhvalov, L D Finkelstein, AMoewes, H Bieber, S Colis and A Dinia, J. Phys.: Condens. Matter.,21, 056002 (2009)
    [4.6] B. E. Sernelius, K.-F. Berggren, Z.-C. Jin,I. Hamberg, and C. G. Granqvist, Phys. Rev. B,37, 10244–10248 (1988)
    [4.7] 蔡淑卿,國立成功大學材料系 (2004)
    [4.8] Xiao-Li Li,J. Appl. Phys.,103, 023911 (2008)

    下載圖示 校內:2011-08-02公開
    校外:2011-08-02公開
    QR CODE