| 研究生: |
鄒玠荏 Tsou, Chieh-Jen |
|---|---|
| 論文名稱: |
聚(3-己基噻吩)於奈米維度自組裝研究 Studies on the Nano-Dimensional Self Assembly of Poly(3-hexylthiophene) |
| 指導教授: |
鄭弘隆
Cheng, Horng-Long |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 103 |
| 中文關鍵詞: | 聚(3-已基噻吩) 、自組裝 、奈米纖維 、有效共軛鏈長 |
| 外文關鍵詞: | Poly(3-hexylthiophene), self-assembly, nanofiber, effective conjugation length |
| 相關次數: | 點閱:71 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文是利用不同溶劑成長聚(3-已基噻吩)自組裝(Self-assembly)奈米結構,並分析其薄膜特性。藉由原子顯微鏡與掃描式電子顯微鏡量測聚(3-已基噻吩)奈米結構。本研究發現利用苯甲醚做為溶劑可以形成奈米網狀結構,而利用氯仿做為溶劑會形成微區結構。
薄膜X光繞射分析,不論使用哪一個溶劑,聚(3-已基噻吩)薄膜主要為(100)面排列。紫外-可見光吸收光譜分析,波長位置在603 nm (A0 band)吸收強度由小到大依序為苯甲醚、二氯甲烷、對二甲苯、氯仿,故本研究推測使用氯仿成長聚(3-已基噻吩)奈米結構,其平均有效共軛鏈長相對較長。
導電式原子力顯微鏡分析,施加正電壓時,利用苯甲醚做為溶劑的薄膜表面形貌與表面電流圖是可以互相對應。奈米纖維邊緣交界處的載子遷移率約為0.05 cm2/Vs。施加正電壓時,利用氯仿做為溶劑的薄膜表面形貌與表面電流圖沒有直接的對應關係。奈米結構邊緣交界處與奈米結構上的載子遷移率都可達到約0.1 cm2/Vs。
拉曼光譜分析,1380 cm-1代表C-C伸縮振動(v2 band),1448 cm-1代表C=C伸縮振動(v1 band)。根據密度泛函理論(Density functional theory)計算,指出有效共軛鏈長(Leff)增加會造成v1 band中心波數呈現指數衰減。針尖增強拉曼光譜分析,本研究發現利用633 nm的激發光源量測時會出現低頻波峰與高頻波峰,而在奈米網狀結構上的低頻中心波數與高頻中心波數都比微區結構來的小,推測奈米網狀結構的有效共軛鏈長(Leff)較長。
In this study, we investigated the effects of solvents on the self-assembly of poly(3-hexylthiophene) (P3HT) polymer chains during film formation from solution. The morphologies and microstructures of the resulting P3HT films were analyzed by using absorption spectroscopy, atomic force microscope (AFM), and conductive-AFM (C-AFM). Nanofibers and micro-domains were observed by using AFM in the P3HT films made with anisole and chloroform (CF), respectively. The absorption spectra indicated that the P3HT films made with CF exhibited the strongest band at 603 nm, thereby indicating that this film had the longest effective conjugation length as suggested by theoretical calculations. The topography of the anisole specimen by C-AFM is consistent with its current mapping. The correlation between the nanoscale morphology and the C-AFM current mapping of P3HT is discussed.
[1]. D. Kearns and M. Calvin. "Photovoltaic Effect and Photoconductivity in Laminated Organic Systems." Journal of Chemical Physics 29, no. 4, p. 950, 1958.
[2]. M. Pope, et al. "Electroluminescence in Organic Crystals." Journal of Chemical Physics 38, no. 8, p. 2042, 1963.
[3]. A. Tsumura, et al. "Macromolecular Electronic Device - Field-Effect Transistor with a Polythiophene Thin-Film." Applied Physics Letters 49, no. 18, p. 1210, 1986.
[4]. J. A. Rogers, et al. "Paper-Like Electronic Displays: Large-Area Rubber-Stamped Plastic Sheets of Electronics and Microencapsulated Electrophoretic Inks." Proceedings of the National Academy of Sciences of the United States of America 98, no. 9, p. 4835, 2001.
[5]. G. H. Gelinck, et al. "Flexible Active-Matrix Displays and Shift Registers Based on Solution-Processed Organic Transistors." Nature Materials 3, no. 2, p. 106, 2004.
[6]. Z. T. Zhu, et al. "Humidity Sensors Based on Pentacene Thin-Film Transistors." Applied Physics Letters 81, no. 24, p. 4643, 2002.
[7]. B. K. Crone, et al. "Organic Oscillator and Adaptive Amplifier Circuits for Chemical Vapor Sensing." Journal of Applied Physics 91, no. 12, p. 10140, 2002.
[8]. D. Voss. "Cheap and Cheerful Circuits." Nature 407, no. 6803, p. 442, 2000.
[9]. P. F. Baude, et al. "Pentacene-Based Radio-Frequency Identification Circuitry." Applied Physics Letters 82, no. 22, p. 3964, 2003.
[10]. S. R. Puniredd, et al. "Polythiophene-Perylene Diimide Heterojunction Field-Effect Transistors." Journal of Materials Chemistry C 1, no. 13, p. 2433, 2013.
[11]. O. Ikkala and G. ten Brinke. "Functional Materials Based on Self-Assembly of Polymeric Supramolecules." Science 295, no. 5564, p. 2407, 2002.
[12]. G. M. Whitesides and B. Grzybowski. "Self-Assembly at All Scales." Science 295, no. 5564, p. 2418, 2002.
[13]. S. I. Stupp, et al. "Supramolecular Materials: Self-Organized Nanostructures." Science 276, no. 5311, p. 384, 1997.
[14]. S. Khodabakhsh, et al. "Using Self-Assembling Dipole Molecules to Improve Charge Collection in Molecular Solar Cells." Advanced Functional Materials 16, no. 1, p. 95, 2006.
[15]. H. L. Yip, et al. "Self-Assembled Monolayer Modified Zno/Metal Bilayer Cathodes for Polymer/Fullerene Bulk-Heterojunction Solar Cells." Applied Physics Letters 92, no. 19, p. 3, 2008.
[16]. Shashi Tiwari, et al. "P3ht-Fiber-Based Field-Effect Transistor: Effects of Nanostructure and Annealing Temperature." Japanese Journal of Applied Physics 53, no. 2, p. 3, 2014.
[17]. M. Arif, et al. "Poly(3-Hexylthiophene) Crystalline Nanoribbon Network for Organic Field Effect Transistors." Applied Physics Letters 96, no. 24, p. 3, 2010.
[18]. E. J. W. Crossland, et al. "Anisotropic Charge Transport in Spherulitic Poly(3-Hexylthiophene) Films." Advanced Materials 24, no. 6, p. 839, 2012.
[19]. A. Kumar, et al. "Nano-Dimensional Self Assembly of Regioregular Poly (3-Hexylthiophene) in Toluene: Structural, Optical, and Morphological Properties." Journal of Applied Polymer Science 131, no. 20, p. 9, 2014.
[20]. M. Baghgar, et al. "Morphology-Dependent Electronic Properties in Cross-Linked (P3ht-B-P3mt) Block Copolymer Nanostructures." Acs Nano 8, no. 8, p. 8344, 2014.
[21]. H. Sirringhaus, et al. "Integrated, High-Mobility Polymer Field-Effect Transistors Driving Polymer Light-Emitting Diodes." Synthetic Metals 102, no. 1-3, p. 857-860, 1999.
[22]. G. M. Wang, et al. "Increased Mobility from Regioregular Poly(3-Hexylthiophene) Field-Effect Transistors." Journal of Applied Physics 93, no. 10, p. 6137-6141, 2003.
[23]. P. J. Brown, et al. "Effect of Interchain Interactions on the Absorption and Emission of Poly(3-Hexylthiophene)." Physical Review B 67, no. 6, p. 16, 2003.
[24]. D. Beljonne, et al. "Interchain Interactions in Conjugated Materials: The Exciton Model Versus the Supermolecular Approach." Journal of Chemical Physics 112, no. 10, p. 4749-4758, 2000.
[25]. E. S. Manas and F. C. Spano. "Absorption and Spontaneous Emission in Aggregates of Conjugated Polymers." Journal of Chemical Physics 109, no. 18, p. 8087-8101, 1998.
[26]. F. C. Wu, et al. "Importance of Disordered Polymer Segments to Microstructure-Dependent Photovoltaic Properties of Polymer-Fullerene Bulk Heterojunction Solar Cells." Journal of Physical Chemistry C 115, no. 30, p. 15057-15066, 2011.
[27]. Fu-Ching Tang, et al. "A Nanoscale Study of Charge Extraction in Organic Solar Cells: The Impact of Interfacial Molecular Configurations." Nanoscale 7, no. 1, p. 104-112, 2015.
[28]. H. L. Cheng, et al. "Long-Term Operations of Polymeric Thin-Film Transistors: Electric-Field-Induced Intrachain Order and Charge Transport Enhancements of Conjugated Poly(3-Hexylthiophene)." Macromolecules 42, no. 21, p. 8251-8259, 2009.
[29]. W. C. Tsoi, et al. "The Nature of in-Plane Skeleton Raman Modes of P3ht and Their Correlation to the Degree of Molecular Order in P3ht:Pcbm Blend Thin Films." Journal of the American Chemical Society 133, no. 25, p. 9834-9843, 2011.