| 研究生: |
杜嘉正 Tu, Chia-Cheng |
|---|---|
| 論文名稱: |
電容非接觸式微流體血液晶片的設計、製造與量測 Design, Fabrication and Measurement of Microfluidic Blood Chip Using Capacitively Coupled Contactless Conductivity Detection Method |
| 指導教授: |
鍾震桂
Chung, Chen-Kuei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 103 |
| 中文關鍵詞: | 毛細晶片 、電容 、血液凝固 、微流體 |
| 外文關鍵詞: | capillary chip, capacitance, blood coagulation, microfludic |
| 相關次數: | 點閱:139 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
血液凝固由於反應複雜、參與反應的凝血因子很多,故臨床上可用以檢測肝臟的功能,但傳統上,血液凝固實驗須仰賴大型之離心機與血液分析儀,故只能在實驗室進行且耗時故不利於臨床應用。實驗室晶片(Lab on a chip)係指一可將傳統複雜實驗整合在同一晶片中,以減少實驗所費之時間與成本之晶片,本研究設計一可用於血液凝固檢測之實驗室晶片,期以改善傳統的血液凝固實驗費時且不易於臨床應用之缺點,透過非接觸式之電容感測,本晶片提供一可量化之數據作為準則,亦可減少血液樣本因接觸各種感測器而在量測過程中變質產生誤差,且在晶片驅動與方面,本研究成功利用毛細力來驅動高黏度之血液而不需任何外加驅動源或裝置,故在未來與其他裝置進行整合時將有更大的優勢,應用更多元。
由實驗結果可知,此一晶片有良好的自驅動能力,在注入血液80分鐘後可觀察到血液完全的流過晶片流道,透過量化分析與線性回歸,我們定義了晶片的規格,並發現此一晶片有良好的重現性,電容掃頻圖僅有2.0-3.0 pF的誤差。我們探討了晶片在不同頻率下血液與電容的關係,並發現在不同的頻率下,血液的電容變化約為0.5-2.0 pF,符合理論電容值1.8 pF,並且此關係曲線媒合之結果與理論推導中之結果一致,最後我們將此一晶片的測得之凝固時間(Clotting time, CT)與血液凝固分析儀CA-50測得之活化部分凝血活酶時間(Activated partial thromboplastin time, aPTT)做比較,我們發現90%電容值下之凝固時間,有非常高的相關係數0.9084。這些結果驗證了電容非接觸式微流體血液晶片可確實用於血液凝固檢測當中,最後若能將此電容晶片整合其它應用則將可使此晶片有更好的發展。
Because of the complex reaction path and various blood coagulation factors, the blood coagulation dection can be used in understanding the function of liver. But, the blood coagulation test is usually performed by a relatively large centrifuge in the laborary traditionally and unfavorable to clinical application. Lab on a chip is the kind of chip integrating the many processes into one chip in order to reduce the cost and time of production and experiment. In this study, we design the lab on a chip using in the blood coagulation detection in order to improve the weakness of clinical application and reduce the experiment time. Although the capacitively coupled contactless conductivity detection, our chip can offer the standard value from quantifiable data and also reduce the error of blood sample because of the contacting with senor during the measurement. In the driving blood respect, we succeeded in using the capillary force to drive the blood in the channel without any external driving resource. So, it’s much potential to apply to integrate with the other device
From the results, we found the great self-driven ability of chip. At the 80TH minute after injection, we can observe blood completely flow through the channel of the chip. By quantitative analysis and linear regression, we also defined the specification of the chip. The chip presented low error, 2.0-3.0 pF, and great repeatability. The relationship between blood and capacitance in the various frequencies has been discussed. We found the the capacitance change of the blood in the chip is about 0.5-2.0 pF closing to the theory value 1.8 pF and the fitting result of the relationship between time and capacitance is similar to the result of theory. Finally, through comparing with the CT (Clotting time) of microfluidic chip and aPTT (Activated partial thromboplastin time) determined form blood coagulation analyzer CA-50, we found the R square is pretty high equal to 0.9084 at the CT of 90 percent capacitance. These results show the characteristic and feasibility of blood coagulation detection in the capacitive capillary chip. In the future, it’s no doubt that this chip can be integrated with the other devices in order to apply in various fields.
1. L. A. Norris, “Blood coagulation”, Best Practice & Research Clinical Obstetrics & Gynaecology, 17, 369-383, 2003.
2. 陳家成,以電阻抗分析法測量人類全血凝固時間,成功大學碩士論文,2005.
3. J. F. Dhainaut, S. B. Yan, B. D. Margolis, J. A. Lorente, J. A. Russell, R. C. Freebairn, H. D. Spapen, H. Riess, B. Basson, G. Johnson III and G. T. Kinasewitz, “Drotrecogin alfa (activated) (recombinant human activated protein C) reduces host coagulopathy response in patients with severe sepsis”, Journal of Thrombosis and Haemostasis, 90, 642-653, 2003.
4. T. J. Cheng, H. C. Chang and T. M. Lin, “A piezoelectric quartz crystal sensor for the determination of coagulation time in plasma and whole blood”, Biosensors & Bioelectronics, 13, 2, 147-156, 1998.
5. H. Song, H. W. Li, M. S. Munson, T. G. V. Ha and R. F. Ismagilov, “On-Chip Titration of an Anticoagulant Argatroban and Determination of the Clotting Time within Whole Blood or Plasma Using a Plug-Based Microfluidic System”, Analytical Chemistry, 78, 4839-4849, 2006.
6. H. Berney and J.J. O'Riordan, “Impedance Measurement Monitors Blood Coagulation”, Analog Dialogue, August, 42-08, 2008.
7. L. Metref, F. Bianchi, V. Vallet, N. Blanc, R. Goetschmann and P. Renaud, “Microfluidic System Based on Thermoexpandable Polymer for on Chip Blood Coagulation Testing”, Micro and Nanosystems, 1, 41-45, 2009.
8. C. Y. Lee, C. M. Chen, G. L. Chang, C. H. Lin and L. M. Fu, "Fabrication and characterization of semicircular detection electrodes for contactless conductivity detector - CE microchips", Electrophoresis, 27, 5043–5050, 2006.
9. P. Kuban, P. C. Hauser, “Evaluation of microchip capillary electrophoresis with external contactless conductivity detection for the determination of major inorganic ions and lithium in serum and urine samples”, Lab on a Chip, 8, 1829–1836, 2008.
10. A. A. Kornyshev, A. R. Kucernak, M. Marinescu, C. W. Monroe, A. E. S. Sleightholme and M. Urbakh, “Ultra-Low-Voltage Electrowetting”, Journal of Physical Chemistry C, 114, 14885–14890, 2010.
11. Z. Zhang, X. Feng, Q. Luo and B. F. Liu, “Environmentally friendly surface modification of PDMS using PEG polymer brush”, Electrophoresis, 30, 3174–3180, 2009.
12. S. Bouaidat, O. Hansen, H. Bruus, C. Berendsen, N. K. Bau-Madsen, P. Thomsen, A. Wolff and J. Jonsmann, “Surface-directed capillary system; theory, experiments and applications”, Lab on a Chip, 5, 827-836, 2005.
13. H. Moon, S. K. Cho, R. L. Garrell and C. J. Kim “Low voltage electrowetting-on-dielectric”, Journal of Applied Physics, 92, 4080-4087, 2002.
14. C. C. Wong, D. R. Adkins and D. Chu, “Development of a micropump for microelectronic cooling”, Microelectromechanical System, 59, 1996.
15. S. H. Ahn and Y. K. Kim “Fabrication and experiment of a planar micro ion drag pump”, Sensors and Actuators A, 70, 1-5, 1998.
16. J. Darabi, M. Rada, M. Ohadi, and J. Lawler “Design, Fabrication, and Testing of an Electrohydrodynamic Ion-Drag Micropump”, Journal of Microelectromechanical System, 11, 684-690, 2002.
17. A. Furuya, F. Shimokawa, T. Matsuura and R. Sawada, “Fabrication of fluorinated polyimide microgrids using magnetically controlled reactive ion etching (MC-RIE) and their applications to an ion drag integrated micropump”, Journal of Micromechanics and Microengineering, 6, 310-319, 1996.
18. D. J. Laser and J. G. Santiago, “A review of micropumps”, Journal of Micromechanics and Microengineering, 14, 35-64, 2004.
19. W. Huang, Q. Liu and Y. Li, “Capillary filling flows inside patterned-surface microchannels”, Chemical Engineering and Technology, 29, 827-836, 2006.
20. S. Yao, D. E. Hertzog, S. Zeng, J. C. Mikkelsen Jr. and J. G. Santiago, “Porous glass electroosmotic pumps: design and experiments”, Journal of Colloid and Interface Science, 268, 143-153, 2003.
21. A. Machauf, Y. Nemirovsky and U. Dinnar, “A membrane micropump electrostatically actuated across the working fluid”, Journal of Micromechanics and Microengineering, 15, 2309-2316, 2005.
22. M. Elwenspoek, T. S. J. Lammerink, R. Miyakei and J. H. J. Fluitman, “Towards integrated microliquid handling systems”, Journal of Micromechanics and Microengineering, 4, 227-245, 1994.
23. T. Y. Ng, T. Y. Jiang, H. Li, K. Y. Lam and J. N. Reddy, “A coupled field study on the non-linear dynamic characteristics of an electrostatic micropump”, Journal of Sound and Vibration, 273, 989-1006, 2004.
24. O. Fraqais and I. Dufour, “Dynamic simulation of an electrostatic micropump with pull-in and hysteresis phenomena”, Sensors and Actuators A, 70, 56-60, 1998.
25. S. Bohm, W. Olthuis and P. Bergveld, “A plastic micropump constructed with conventional techniques and materials”, Sensors and Actuators A, 77, 223-228, 1999.
26. M. M. Teymoori and E. Abbaspour-Sani, “Design and simulation of a novel electrostatic peristaltic micromachined pump for drug delivery applications”, Sensors and Actuators A, 117, 222-229, 2005.
27. D. S. Leea, J. S. Koa and Y. T. Kim, “Bidirectional pumping properties of a peristaltic piezoelectric micropump with simple design and chemical resistance”, Thin Solid Films, 117, 285-290, 2004.
28. M. Koch, N. Harris, A. G. R. Evans, N. M. White and A. Brunnschweiler, “A novel micromachined pump based on thick-film piezoelectric actuation”, Sensors and Actuators A, 70, 98-103, 1998.
29. J. H. Tsai and L. W. Lin, “A Thermal bubble actuated micronozzle-diffuser pump”, Journal of Microeletromechanical system, 11, 665-671, 2002.
30. E. Makino, T. Shibata and K. Kato, “Dynamic thermo-mechanical properties of evaporated TiNi shape memory thin film”, Sensors and Actuators A, 78, 163-167, 1999.
31. E. Makino, T. Mitsuya and T. Shibata, “Fabrication of TiNi shape memory micropump”, Sensors and Actuators A, 88, 256-262, 2001.
32. Y. Nakashima, S. Hata and T. Yasuda, “Blood plasma separation and extraction from a minute amount of blood using dielectrophoretic and capillary forces”, Sensors and Actuators B, 145, 561-569, 2010.
33. M. S. Pommer, Y. Zhang, N. Keerthi, D. Chen, J. A. Thomson, C. D. Meinhart and H. T. Soh, “Dielectrophoretic separation of platelets from diluted whole blood in microfluidic channels”, Electrophoresis, 29, 1213-1218, 2008.
34. L. Qin, O. Vermesh, Q. Shi and J. R. Heath, “Self-powered microfluidic chips for multiplexed protein assays from whole blood”, Lab on a Chip, 9, 2016-2020, 2009.
35. Y. Y. Lin, R. D. Evans, E. Welch, B. N. Hsu, A. C. Madison and R. B. Fair, “Low voltage electrowetting-on-dielectric platform using multi-layer insulators”, Sensors and Actuators B, 150, 465-470, 2010.
36. S. Mukhopadhyay, S. S. Roy, A. Mathur, M. Tweedie and J. A. McLaughlin, "Experimental study on capillary flow through polymer microchannel bends for microfluidic applications", Journal of Micromechanics and Microengineering, 20, 055018-055024, 2010.
37. W. A. C. Bauer, M. Fischlechner, C. Abellb and W. T. S. Huck, “Hydrophilic PDMS microchannels for high-throughput formation of oil-in-water microdroplets and water-in-oil-in-water double emulsions”, Lab on a Chip, 10, 1814-1819, 2010.
38. T. A. Crowley and V. Pizziconi, “Isolation of plasma from whole blood using planar microfilters for lab-on-a-chip applications”, Lab on a Chip, 5, 922-929, 2005.
39. J. S. Shim, A. W. Browne and C. H. Ahn, “An on-chip whole blood/plasma separator with bead-packed microchannel on COC polymer”, Lab on a Chip, 12, 949-957, 2010.
40. Y. Gu and N. Miki, “A microfilter utilizing a polyethersulfone porous membrane with nanopores”, Journal of Micromechanics and Microengineering, 17, 2308-2315, 2007.
41. M. Kersaudy-Kerhoas, D. M. Kavanagh, R. S. Dhariwal, C. J. Campbell and M. P. Y. Desmulliez, “Validation of a blood plasma separation system by biomarker detection”, Lab on a Chip, 10, 1587-1595, 2010.
42. A. I. Rodriguez-Villarreal, M. Arundell, M. Carmonaab and J. Samitier, “High flow rate microfluidic device for blood plasma separation using a range of temperatures”, Lab on a Chip, 10, 211-219, 2010.
43. K. H. Han and A. B. Frazier, “Paramagnetic capture mode magnetophoretic microseparator for high efficiency blood cell separations”, Micro and Nanosystems, 6, 265-273, 2006.
44. B. Y. Qu, Z. Y. Wu, F. Fang, Z. M. Bai, D. Z. Yang and S. K. Xu, “A glass microfluidic chip for continuous blood cell sorting by a magnetic gradient without labeling”, Analytical and Bioanalytical Chemistry, 392, 1317-1324, 2008.
45. R. Pethig, D. B. Kell, “The passive electrical properties of biological systems: their significance in physiology, biophysics and biotechnology”, Phys. Med. Biol., Vol. 32, No 8, 933-970, 1987
46. S. K. Srivastava, P. R. Daggolu, S. C. Burgess, A. R. Minerick, “Dielectrophoretic characterization of erythrocytes-Positive ABO blood types”, Electrophoresis, 29, 5033–5046, 2008.
47. M. Wolf, R. Gulich, P. Lunkenheimer, A. Loidl, "Broadband dielectric spectroscopy on human blood", Biochimica et Biophysica Acta, 1810, 727–740, 2011
48. 陳育聖,新型菱形混合器與毛細驅動晶片設計與製作,成功大學碩士論文,2009.
49. 李政庭,毛細力微流體晶片的製作與在血液凝固檢測的應用,2011.
50. C.K. Chung, Y.C. Sung, G.R. Huang, E.J. Hsiao, W.H. Lin and S.L. Lin, “Crackless linear through-wafer etching of Pyrex glass using liquid-assisted CO2 laser processing”, Applied Physics A, 94, 927-932, 2009.
51. 張恩旗,毛細力驅動流體晶片的設計和混合應用,成功大學碩士論文,2010.