簡易檢索 / 詳目顯示

研究生: 謝昕懌
Shie, Shin-Yi
論文名稱: 鈣系爐石在純氧燃燒下吸收二氧化碳之研究
Sorption of Carbon Dioxide from Oxy-fuel Combustion by calcium-based slags
指導教授: 朱信
Chu, Hsin
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 166
中文關鍵詞: 二氧化碳捕捉純氧燃燒碳酸化吸收劑脫硫渣
外文關鍵詞: CO2 capture, oxy-fuel combustion, carbonation, sorben, desulfurization slag
相關次數: 點閱:152下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 工業革命後,人口快速成長、科技突飛猛進,進而大量使用化石燃料,溫室氣體之一的二氧化碳也因為大量化石燃料的燃燒而產生,累積在大氣中將造成溫度升高、海平面上升等全球氣候異常變遷,因此對二氧化碳進行有效的排放控制為當務之急。純氧燃燒系統具濃縮二氧化碳之特點,排放高濃度二氧化碳優點有提高捕獲效果、降低捕獲成本、易改建等,因此近期應用於化石燃料發電廠獲得高度重視。在二氧化碳捕獲技術中,可降低發電及環保成本之高溫乾式淨化系統是未來趨勢,且以鈣系爐石當作高溫固態吸收劑,可降低吸收劑成本與增加爐石再利用性,因此本實驗模擬純氧燃燒之煙道氣條件,以鈣系爐石(脫硫渣、氧化渣、還原渣與底渣)作為吸收劑,探討與二氧化碳在高溫下反應形成金屬碳酸鹽之研究。
    本研究操作條件及研究成果分為下列幾部分說明:
    1.由ICP和XRD分析結果顯示,脫硫渣的鈣氧化物含量(73.08%)明顯高於氧化渣(28.70%)、還原渣(39.34%)與底灰(2.00%),且脫硫渣中的Ca以Ca(OH)2形式存在,有利於碳酸化之反應。由TGA分析結果顯示,脫硫渣對CO2有較好的處理效果,其處理效果和爐石中鈣含量及其型式有顯著的關係。
    2.以反應管模擬固定床,探討操作參數對脫硫渣吸收二氧化碳之實驗可以發現,溫度對脫硫渣吸收二氧化碳之最佳操作溫度為600oC;降低空間流速有助於碳酸化效果,但空間流速在1,200 mL hr-1 g-1~4,000 mL hr-1 g-1之間時利用率無顯著提升;添加水氣對脫硫渣碳酸化反應之影響,實驗結果發現水氣有助於碳酸化反應之利用率,當水氣濃度於5%時吸收效果最佳,之後隨著水氣濃度的增加,利用率有下降趨勢,推測水氣濃度過高,會使系統不平衡而阻礙碳酸化反應發生;二氧化硫的存在亦會降脫硫渣之利用率,提高二氧化硫之濃度,發現脫硫渣無法提供更多活性位置進行硫酸化反應。
    3.利用XRD、SEM、FTIR作為輔助實驗進行反應前後脫硫渣吸收劑變化之分析。由XPS以及FTIR圖譜分析發現在水氣和二氧化硫同時存在下,經碳酸化反應後之產物除了以CaCO3的形式存在,並伴隨著硫化反應產生CaSO4。
    4.由反應動力研究發現,第一型衰退模式所求得ko與kd之活化能分別為345.3 kJ/mol與13.4 kJ/mol,較合適用來描述本研究之動力模式。
    5.本實驗亦以實驗室之固定床反應器結合工業燃燒爐,進行尺寸放大10倍,利用水淬高爐石為吸收劑,進行燃油與燃煤煙道氣現址二氧化碳捕捉與固定,研究發現水淬高爐石吸收二氧化碳之最佳操作溫度應為500oC,且水氣的存在與燃燒完全更有利於水淬高爐之碳酸化反應。

    After industrial revolution, the increases of CO2 concentration in the atmosphere are resulted from the consumption of huge amounts of fossil fuels, and CO2 accumulating in the atmosphere will cause global climate changes including temperature increasing and ocean level rising. Hence, the effective control of CO2 emission is imperative. Oxyfuel combustion system is a CO2 concentrated technology, contributing to increasing capture efficiency, decreasing processing cost, and constructing easily. Recently, it is considered a new option for power generation. In CO2 capture technologies, the high temperature carbonation by dry techniques is a trend for related field. Calcium-based slags not only are used to absorb carbon dioxide but also reduce the cost of sorbents. In this study, the calcium-based slags (desulfurization slag, EAF oxidizing slag, EAF reductive slag and bottom ash) were used to absorb carbon dioxide in the simulated oxy-fuel combusted flue gas.
    Results of this study are described as follows:
    1.According to the results by using ICP and XRD analysis, the calcium oxide content of desulfurization slag (73.08%) is much higher than those of EAF furnace oxidizing slag (28.70%), EAF reductive slag (39.34%), and bottom ash (2.00%). Furthermore, the Ca form in desulfurization slag is Ca(OH)2, hence has a great potential on the carbonation. According to the results by using TGA analysis, desulfurization slag is the best choice in those slags for the removal of CO2, and the utilizaton is a function of calcium content of the slags.
    2.In a fixed-bed reactor, the optimal operating temperature was about 600oC for the CO2 removal with desulfurization slag; the utilization ratio of the sorbent increased as the space velocity decreased before it was lower than 4,000 mL hr-1 g-1; the effects of adding water vapor on the carbonation of desulfurization slag were performed. The results indicate that the water vapor concentration can enhance the carbonation reaction and the optimal condition is 5%. However, the utilization decreases as the water vapor concentration increases over 5%, resulting from blocking of carbonation by extreme water vapor concentration. The effect of sulfur-containing flue gas shows that the overall utilization of the slag goes down, and the results are speculated that desulfurization slag could not provide more effective active sites to sulfurization.
    3.The sorbents were examined for the better understanding of structure change, element composition and crystal transformation by XRD, SEM, FTIR. From the XPS and FTIR patterns, when the water vaper and SO2 existing simultaneously, the carbonated products contain not only CaCO3 but also CaSO4 because of the sulfurization.
    4.For the kinetic study for the carbonation of desulfurization slag with experiment data at various temperatures, the first type of deactivation model is suitable to describe results.
    5.In the study, carbon dioxide separation technology was also coupled with a oxy-coal combustion system, by using GGBF slag and the pilot plant located in NCKU Kuei-Len campus to demonstrate its feasibility in carbon dioxide sorption and look for the optimal operating conditions. Results of this study are described as follows (1)The optimal operating temperature is about 500°C for the carbon dioxide removal with GGBF slag. (2) The water vapor concentration and the higher degree of combustion completion can enhance the carbonation reaction.

    摘要 I Abstract III 致謝 IX 目錄 XI 表目錄 XIV 圖目錄 XVI 第一章 前言 1 1-1 研究動機 1 1-2 研究內容與架構 4 第二章 文獻回顧 6 2-1 二氧化碳之特性 6 2-1.1 二氧化碳之來源 6 2-1.2 二氧化碳之性質 10 2-1.3 二氧化碳對環境之影響12 2-2 二氧化碳捕獲技術(依捕獲原理區分) 16 2-2.1 吸收法 16 2-2.2 吸附法 17 2-2.3 冷凝法 18 2-2.4 薄膜法 18 2-3 二氧化碳捕獲技術(依捕獲位置區分) 20 2-3.1 燃燒後捕獲 20 2-3.2 燃燒前捕獲 20 2-3.3 富氧燃燒捕獲 21 2-4 吸收劑吸收效果 24 2-5 鈣系爐石之種類 26 2-5.1 脫硫渣之物化特性及應用 26 2-5.2 電弧爐氧化渣與還原渣之物化特性及應用 29 2-5.3 底渣之物化特性及應用 33 2-6 吸收劑活性衰退 38 2-7 操作參數對碳酸化之影響 40 2-8 二氧化碳轉化之機制 42 2-9 吸收劑反應動力探討 46 2-9.1 衰退模式 46 2-9.2 覆蓋模式 48 2-9.3 Arrhenius表示式 50 第三章 研究方法與實驗器材 51 3-1 研究方法 51 3-1.1 實驗規劃 51 3-1.2 實驗步驟與方法 53 3-2 實驗器材 54 3-2.1 實驗材料 54 3-2.2 實驗系統裝置 55 3-2.3 主要儀器原理介紹 60 3-3 預備實驗 71 3-3.1 系統測漏 71 3-3.2 鈣系爐石吸收劑之前置作業 71 3-3.3 零點及全幅校正 71 3-3.4 空白實驗 72 第四章 結果與討論 74 4-1 不同鈣系爐石吸收劑之特性分析 76 4-1.1 XRD分析 76 4-1.2 ICP-OES金屬元素分析 81 4-1.3 熱重分析 84 4-1.4 BET比表面積及孔徑分析 87 4-2 不同操作參數對脫硫渣去除CO2之影響 90 4-2.1 不同操作溫度對脫硫渣吸收CO2之影響 90 4-2.2 不同空間流速對脫硫渣吸收CO2之影響 96 4-2.3 不同水氣濃度對脫硫渣吸收CO2之影響 101 4-2.4 不同二氧化硫濃度對脫硫渣吸收CO2之影響 105 4-3 脫硫渣碳酸化前後分析 109 4-3.1 SEM分析 109 4-3.2 EDS分析 112 4-3.3 Mapping分析 116 4-3.4 XPS分析 121 4-3.5 FTIR分析 130 4-4 碳酸化反應動力模擬 132 4-4.1 表面覆蓋模式 132 4-4.2 第一型衰退模式 135 4-4.3 第二型衰退模式 138 4-5 歸仁實廠操作示範 141 第五章 結論與建議 146 5-1 結論 146 5-2 建議 148 參考文獻 149 附錄 159

    王怡敦,物組成對燃煤飛灰去除水中銅離子之影響,台南藥理科技大學,環境工程衛生系,碩士論文,2003
    朱信、曾明宗,煤炭氣化複循環發電機組可行性之研究,工業技術研究院能源與資源研究所、台灣電力公司電力綜合研究所研究計劃期末報告,1991。
    行政院環境保護署,溫室氣體排放統計,2010。
    行政院環境保護署,CCS策略聯盟,2011。
    李中達,「氫氧化鈣與二氧化碳反應之動力學」,國立台灣大學,化學工程研究所,碩士論文,1996。
    吳萬金,煤灰內有價金屬之回收,臺灣礦業,第49卷,第3期,頁107-121,1997。
    吳嶸,包矽改性奈米碳酸鈣應用於高溫二氧化碳吸附劑的製備及評價,浙江大學,碩士論文,2006。
    吳嶸、吳素芳,包矽改性納米碳酸鈣應用於高溫CO2吸附的性能,化工學報,第57期,頁1722-1726,2006。
    吳國光、張育誠、焦鴻文,富氧燃燒技術各產業應用現況,燃燒季刊,第二十一期,頁37-50,2012。
    吳典嬑,自製矽酸鋰在純氧燃燒下去除二氧化碳之研究,國立成功大學環境工程學系碩士論文,2013。
    余建成,先進發電技術與二氧化碳排放減量,中興工程季刊,第108期,頁67-75,2010。
    林佳璋、劉文宗,二氧化碳回收技術,工業技術研究院化學工業研究所,2007。
    林麗娟,X光繞射原理及其應用,工業材料,第86期,頁100-109,1994。
    柯子星,「以紅壤在高溫下去除煤炭氣化氣中硫化氫之研究」,國立成功大學環境工程學系博士論文,2005。
    洪桂彬,石化燃料燃燒與全球CO₂排放趨勢分析,瓦斯季刊,第84期,頁8-28,2008。
    洪桂彬,淨煤發電技術及二氧化碳捕集技術介紹,瓦斯季刊,第88期,頁39-52,2009。
    翁鳳英,二氧化碳捕捉與封存技術,能源報導,頁27-30,2010。
    馬凱文,「牡蠣殼製氧化鈣奈米顆粒在二氧化碳吸收的應用」,國立成功大學環境工程學系碩士論文,2009。
    高綾君,以爐石在高溫下去除二氧化碳之研究,國立成功大學環境工程學系碩士論文,2009。
    徐恆文,二氧化碳的捕獲與分離,科學發展,第413期,頁25-27,2007。
    郭淑德,飛灰資源化,礦業技術,第4期,頁299-315,1991。
    郭淑德,臺灣煤灰人工魚礁之研究經驗回顧,臺電工程月刊,第547期, 頁22-31,1994。
    郭炯煇,中鋼爐渣工程性質之研討,國立高雄應用科技大學,木工程與防災科技研究所,碩士論文,2006。
    郭文田、翁明偉,利用脫硫渣與水淬爐石產製無卜特蘭水泥控制性低強度材料,中正嶺學報,第三十八卷,第一期,頁27-51,2009。
    張玉金,浮灰性質之研究,台電工程月刊,第522 期,頁18-27,1994。
    張高僑,鈣系爐渣封存二氧化碳行為之研究,國立成功大學環境工程學系碩士論文,2008。
    陳陵援、吳慧眼,儀器分析,三民書局,2000。
    陳航、陳郁文,二氧化碳之補集集再利用技術之應用介紹,工業污染防治,第九十四期,頁117-133,2005。
    陳偉聖、周瑋珊、吳俊毅、申永輝、蔡敏行,台灣煉鋼集塵灰處理現況,工業污染防治,第116期,頁1-18,2010。
    廖平浩,純氧燃燒中以爐石在高溫下去除二氧化碳之研究,國立成功大學環境工程學系碩士論文,2012。
    樺懋科技股份有限公司,事業廢棄物再利用者登記檢核申請書,2013。
    黃兆龍,高爐熟料的性質及在混凝土工程上的應用,營建世界,頁55-59,1994。
    經濟部工業局,電弧爐煉鋼還原渣資源化應用技術手冊,1999。
    經濟部能源局,能源供給結構(能源別)及最終能源消費結構(部門別),2010。
    賴正義,郭麗雯,美國燃煤飛灰的利用和儲存之概觀,臺電工程月刊,第511期,頁1-15,1991.
    蘇茂豐、陳立,電弧爐煉鋼爐渣之資源化現況及未來展望,工業污染防治,第九十三期,頁27-51,2005。
    Abanades, J. C., Grasa, G., Alonso, M., Rodriguez, N., Anthony, E. J., Romeo, L. M., Cost Structure of a Postcombustion CO2 Capture System Using CaO, Environmental Science Technology, 41(15), 5523-5527, 2007.
    Abanades, J. C., Alvarez, D., Conversion limits in the reaction of CO2 with lime, Energy & Fuels, 17(2), 308–315, 2003.
    Anderson1, S., Newell, R., Prospects for carbon carbon capture and storage technologies, Environment and Resources, 29, 109-142, 2004.
    Azar, C., Lindgren , K., Larson, E., Möllersten, K., Carbon Capture and Storage From Fossil Fuels and Biomass – Costs and Potential Role in Stabilizing the Atmosphere, Climatic Change, 74(1-3), 47-79, 2006.
    Baciocchi, R., Costa, G., Bartolomeo, E. D., Polettini, A., Pomi, R., Carbonation of Stainless Steel Slag as a Process for CO2 Storage and Slag Valorization, Waste and Biomass Valorization, 1(4), 467-477, 2010.
    Baer D. R., Blanchard D. L., Engelhard M. H., Zachara J. M., The interaction of water and Mn with surfaces of CaCO3: An XPS study, Surface and Interface Analysis ,17(1), 25-30, 1991.
    Baer D. R., Moulder J. F., High Resolution XPS Spectrum of Calcite (CaCO3), Surface Science Spectra, 2(1), 1-7, 1993.
    Butt, D. P., Lackner, K. S., Wendt, C. H., Conzone, S. D., Kung, H., Lu, Y. C., and Bremser, J. K., Kinetics of thermal dehydroxylation and carbonation of magnesium hydroxide, Journal of the American Ceramic Society , 79(7), 1892-1898, 1996.
    Buhre, B. J. P., Elliott, L.K., Sheng, C.D., Gupta, R.P., Wall, T.F., Oxy-fuel combustion technology for coal-fired power generation, Energy and Combustion Science, Energy and Combustion Science, 31(4), 283-307, 2005.
    Campbell J. A., Smith R. D., Davis L. E., Application of X-ray Photoelectron. Spectroscopy to the Study of Fly Ash, Applied Spectroscopy, 32(3), 316-319, 1978.
    Datsyuk V., Kalyva M., Papagelis K., Parthenios J., Tasis D., Siokou A., Kallitsis I., Galiotis C., Chemical oxidation of multiwalled carbon nanotubes, Carbon, 46(6), 833-840, 2008.
    deConinck, H., IPCC WG III on Mitigation, The IPCC special report on carbon dioxide capture and storage, Workshop on CDM and CCS, METI, Government of Japan, April, 20-21, Paris, France, 2006.
    Diego, L. F. de, Rufas, A., García-Labiano, F., Obras-Loscertales, M. de las, Abad, A., Gayán, P., Adánez, J., Optimum temperature for sulphur retention in fluidised beds working under oxy-fuel combustion conditions, Fuel, 114, 106-113, 2013.
    Dupin J. C., Gonbeau D., Vinatier P., Levasseur A., Systematic XPS studies of metal oxides, hydroxides and peroxides, Physical Chemistry, 2, 1319-1324, 2000.
    Eldik, R. V., Aresta M., CO2 Chemistry, Academic Press, 416, 2013.
    Fauth, D. J., Frommell, E. A., Hoffman, J. S., Reasbeck, R. P., Pennline, H. W., Eutectic salt promoted lithium zirconate: novel high temperature sorbent for CO2 capture, Fuel Process Technol, 86(14-15), 1503-1521, 2005.
    Fennell, P. S.; Davidson, J. F.; Dennis, J. S.; Hayhurst, A. N., Regeneration of sintered limestone sorbents for the sequestration of CO2 from combustion and other systems. J. Energy Institute, 80(2), 116–119, 2007.
    Figueroaa, J. D., Fouta, T., Plasynskia, S., McIlvriedb, H., Srivastavab, R. D., Advances in CO2 capture technology—The U.S. Department of Energy's Carbon Sequestration Program, Greenhouse Gas Control, 2(1), 9-20, 2008.
    Fu, C., Gundersen, T., Using exergy analysis to reduce power consumption in air separation units for oxy-combustion processes, Energy, 44(1), 60-68, 2012.
    Fuertes A. B., Velasco G., Fuente E., Alvarez T., Study of the direct sulfation of limestone particles at high CO2 partial pressures, Fuel Processing Technology, 38(3), 181-192, 1994.
    Galván-Ruiz, M., Hernández, J., Leticia, B., Noriega-Montes, J., Rodríguez-García, M. E., Characterization of calcium carbonate, calcium oxide, and calcium hydroxide as starting point to the improvement of lime for their use in construction, Materials in Civil Engineering, 21(11), 694-698, 2009.
    Gibbins, J., Chalmers, H., Carbon capture and storage, Energy Policy, 36(12), 4317-4322, 2008.
    Gomes, P. S., Minceva, M., Rodriguesa, A. E., Operation Strategies for Simulated Moving Bed in the Presence of Adsorbent Ageing, Separation Science and Technology , 42(16), 3555-3591, 2007.
    Goto, K., Yogo, K., Higashii, T., A review of efficiency penalty in a coal-fired power plant with post-combustion CO2 capture, Applied Energy, 111 710-720, 2013.
    Gupta, H., Fan, L. S., Carbonation-Calcination Cycle Using high reactivity calcium oxide for carbon dioxide separation from flue gas, Industrial & Engineering Chemistry Research, 41(16), 4035-4042, 2002.
    Herzog, H. J., What future for carbon carbon capture and sequestration, Environmental Science & Technology, 35, 148A-153A, 2001.
    Hiemenz, P. C., Principles of Colloid and Surface Chemistry, M. Dekker, 1986.
    Hossain, M. M., de Lasa, H. I., Chemical-looping combustion (CLC) for inherent CO2 separations-a review, Chemical Engineering Science, 63(18), .4433-4451, 2008.
    Hu,Y., Yana, J., Li, H., Effects of flue gas recycle on oxy-coal power generation systems, Applied Energy, 97, 255-263, 2012.
    Huijgen, W. J., Comans, R. N., Carbonation of steel slag for CO2 sequestration: leaching of products and reaction mechanisms, Environmental Science & Technology, 40(8), 2790-2796, 2006.
    Iternatoinal Energy Agency, CO2 Emissions From Fuel Combustion Highlights, IEA publications, France, 1-158, 2013.
    Ji X. B., Chen Y. X., Zhao G. Q., Wang X. B., Liu W. M., Tribological Properties of CaCO3 Nanoparticles as an Additive in Lithium Grease, Tribology Letters, 41(1), 113-119, 2011.
    Kalinkin, A. M., Kalinkina, E. V., Zalkind, O. A., Makarova, T. I., Chemical Interaction of Calcium Oxide and Calcium Hydroxide with CO2 during Mechanical Activation, Inorganic Materials, 41(10), 1073-1079, 2005
    Kiehl J., Ben-Azzouz C., Dentel D., Derivaz M., Bischoff J.L., Delaite C., Bistac S., Grafting process of ethyltrimethoxysilane and polyphosphoric acid on calcium carbonate surface, Applied Surface Science, 264(1), 864-871, 2013.
    Kima, S., Ahna, H., Choia, S., Kimb, T., Impurity effects on the oxy-coal combustion power generation system, International Journal of Greenhouse Gas Control, 11, 262-270, 2012.
    Kwon S., Fan M., Dacosta H. F. M., Russell A. G., Tsouris C., Reaction Kinetics of CO2 Carbonation with Mg-Rich Minerals, Physical Chemistry A, 115 (26), 7638–7644, 2011.
    Lia, B., Duana, Y., Luebkea, D., Morreale, B., Advances in CO2 capture technology: A patent review, Applied Energy, 102, 1439-1447, 2013.
    Li G. G., Keener T. C., Stein A. W., Khang S. J., CO2 reaction with Ca(OH)2 during SO2 removal with convective pass sorbent injection and high temperature filtration, Surface and Interface Analysis, 2(1), 47-56, 2000.
    Long, X. F., Gevert, B. S, Abrahamsson, P., Mechanistic studies of initial decay of hydrodemetallization catalysts using model compounds—effects of adsorption of metal species on alumina support, Catalysis, 222(1), 6-16, 2004.
    MacKenzie, A., Granatstein, D. L., Anthony, E. J., Abanades, J. C., Economics of CO2 Capture Using the Calcium Cycle with a Pressurized Fluidized Bed Combustor, Energy & Fuels, 21(2), 920-926, 2007.
    Manovic, V.; Anthony, E. J., Steam reactivation of spent CaO-based sorbent for multiple CO2 capture cycles, Environmental Science & Technology, 41(4), 1420–1425, 2007.
    Manovic, V.; Anthony, E. J. Sequential SO2/CO2 capture enhanced by steam reactivation of a CaO-based sorbent. Fuel, 87(8-9), 1564–1573, 2008.
    Mark, B. D., Mark F. M., GLACIERS AND THE CHANGING EARTH SYSTEM: A 2004 SNAPSHOT, Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colo, 21, 2004.
    Martínez, A., Lara, Y., Lisbona, P., M. Romeo., Operation of a Cyclonic Preheater in the Ca-Looping for CO2 Capture, Environmental Science and Technology, 47(19), 11335-11341, 2013.
    Maryam, S., Calcium oxide-based sorbents for CO2 capture at high temperature, University of Illinois at Urbana-Champaign, Ph.D. dissertation, 2014.
    Materic, V., Smedley, S. I., High temperature carbonation of Ca(OH)2, Industrial & Engineering Chemistry Research, 50(10), 5927-5932, 2011.
    Merkel, T. C., Lin, H., Wei, X., Baker R., Power plant post-combustion carbon dioxide capture: An opportunity for membranes, Membrane Science, 359(1-2), 126-139, 2010.
    Niemantsverdriet, J. W., Spectroscopy in Catalysis, Weinheim, U.S.A, 2007.
    Nikulshina, V., Galvez, M. E., Steinfeld, A., Kinetic analysis of the carbonation reactions for the capture of CO2 from air via the Ca(OH)2-CaCO3-CaO solar thermochemical cycle, Chemical Engineering Journal, 129(1-3), 75-83, 2007.
    Nytén A., Stjerndahl M., Rensmo H., Siegbahn H., Armand M., Gustafsson T., Edströma K., Thomas J. O., Surface characterization and stability phenomena in Li2FeSiO4 studied by PES/XPS, Materials Chemistry, 16, 3483-3488, 2006.
    Parka, S. W., Sunga, D. H., Choia, B. S., Oha, K. J., Moonb, K. H., Sorption of Carbon Dioxide onto Sodium Carbonate, Separation Science and Technology, 41(12), 2665-2684, 2006.
    Perry, R. H., Green, D. W., “Perry’s Chemical Enginneers’ Handbook, 8th Edition”, McGraw, Hill International Editions, 2007.
    Ramanathan, V., The greenhouse theory of climate: A test by an inadvertent global experiment, Science 240, 293-299, 1988.
    Rao, A. B., Rubin, E. S., A technical, economic, and environmental assessment of amine-based CO2 capture technology for power plant greenhouse gas control, Environmental Science & Technology, 36(20), 4467-4475, 2002.
    Reddy E. P., Smirniotis P. G., High-Temperature Sorbents for CO2 Made of Alkali Metals Doped on CaO Supports, Physical Chemistry, 108(23), 7794-7800, 2004.
    Resnik, K. P., Yeh, J. T., Pennline, H. W., Aqua ammonia process for simultaneous removal of CO2 and SO2 and NOx, International Journal of Environmental Technology and Management, 4(1-2), 89-104, 2005.
    Reisinger, A., Pachauri, R. K., Climate Change 2007: Synthesis Report, Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 2007.
    Rubin, E. S., Mantripragada, H., Marks, A., Versteeg, P., Kitchin, J., The outlook for improved carbon capture technology, Progress in Energy and Combustion Science, 38(5), 630-671, 2012.
    Saida, A., Mattila, H. P., Järvinen, M., Zevenhoven R., Production of precipitated calcium carbonate (PCC) from steelmaking slag for fixation of CO2, Applied Energy, 112, 765-771, 2013.
    Satterfield, C. N., Heterogeneous Catalysis in Industrial Practice, McGraw-Hill, Inc, U.S.A, 1991.
    Scheffknecht G, Al-Makhadmeh, L., Schnell, U., Maier, J., Oxy-fuel coal combustion—A review of the current state-of-the-art, Greenhouse Gas Control, 5(1), 16-35, 2011.
    Seepana, S., Jayanti S., Optimized enriched CO2 recycle oxy-fuel combustion for high ash coals, Fuel, 102, 32-40, 2012.
    Seo, Y., Jo, S. H., Ryu, C. K., Yi, C. K., Effect of Reaction Temperature on CO2 Capture Using Potassium-Based Solid Sorbent in Bubbling Fluidized-Bed Reactor, Environmental Engineering-Asce, 135(6), 473-477, 2009.
    Shih, S. M., Ho, C. S., Song, Y. S., and Lin, J. P., Kinetics of the reaction of Ca(OH)2 with CO2 at low temperature, Industrial & Engineering Chemistry Research, 38(4), 1316-1322, 1999.
    Skoog, D. A., Holler, F. J., Nieman T. A., Principles of Instaumental Analysis , Saunders College Publishing, 1998.
    Sokhi, R. S., World Atlas of Atmospheric Pollution, Anthem Press, London, p.56, 2011.
    Syed, A. U., Simms, N. J., Oakey, J. E., Fireside corrosion of superheaters: Effects of air and oxy-firing of coal and biomass, Fuel, 101, 62-73, 2012.
    Szekely J., Evans, J. W., and Sohn, H. Y. Gas-solid Reaction, Academic Press Inc, New York, 1976.
    Teramoto, M., Ohnishi, N., Takeuchi, N., Kitada, S., Matsuyama, H., Matsumiya, N., and Mano, H., Separation and enrichment of carbon dioxide by capillary membrane module with permeation of carrier solution, Separation and Purification Technology, 30(3), 215–227, 2003.
    Tina, S., Jiang P. J., Chen, X., Yan, F., Li K., Direct Gas–Solid Carbonation Kinetics of Steel Slag and the Contribution to In situ Sequestration of Flue Gas CO2 in Steel-Making Plants, Industrial & Engineering Chemistry Research, 6(12), 2348-2355, 2013.Wang, M., Lawal A., Stephenson, P.,Sidders, J., Ramshaw, C.,
    Toftegaard, M. B., Brixa, J., Jensena, P. A., Glarborga, P., Jensen, A. D., Oxy-fuel combustion of solid fuels, Energy and Combustion Science, 36(5), 581-625, 2010.
    Wang, M., Lawal, A., Stephenson, P., Sidders, J., Ramshaw, C., Post-combustion CO2 capture with chemical absorption: a state-of-the-art review, Chemical engineering research and design, 89(9), 1609-1624, 2011.
    Weiss, H., Rectisol wash for purification of partial oxidation gases, Gas Separation & Purification, 2(4), 171-176, 1998.
    Wu, S. F., Beum, T. H., Yang, J. I., and Kim, J. N., Properties of Ca-base CO2 sorbent using Ca(OH)2 as precursor, Industrial & Engineering Chemistry Research, 46(24), 7896-7899, 2007.
    Wu, S. F., Study on the CO2 sorbent at high temperature application in the SERP technique of producing hydrogen, 71-2 Jang-dong Yusong-ku, Daejon, 305-343, Korea.
    Yeh, J. T. , Resnik, K. P., Pygle K, Pennline H. W., Semi batch absorption and regeneration studies for CO2 capture by aqueous ammonia, Fuel Process Technol, 86(14-15), 1533-1546, 2005.
    Yu, J., Wang, K., Study on characteristics of steel slag for CO2 capture, Energy & Fuels, 25(11), 5483-549, 2011.
    http://nqa.cpc.tw/NQA/web/download/20th_chc.pdf,中聯資源股份有限公司,2003。

    下載圖示 校內:2019-07-04公開
    校外:2019-07-04公開
    QR CODE