| 研究生: |
陳俊佑 Chen, Chun-Yu |
|---|---|
| 論文名稱: |
學校教室中 PM2.5 濃度預測模式技術開發 Developing a Modelling Approach for Predicting PM2.5 Concentrations in Classrooms for School Children |
| 指導教授: |
蔡朋枝
Tsai, Perng-Jy |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
醫學院 - 環境醫學研究所 Department of Environmental and Occupational Health |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 英文 |
| 論文頁數: | 141 |
| 中文關鍵詞: | PM2.5 暴露濃度 、產生率 、非通風移除率 、完全混合盒模式 、教室 |
| 外文關鍵詞: | PM2.5 exposure concentration, Generation rate, Non-ventilation removal rate, Well-mixed room model, Classroom |
| 相關次數: | 點閱:21 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鑒於環境 PM2.5濃度的變化以及教室內活動的多樣性,傳統監測方法在評估學童長期室內 PM2.5暴露時常因所需樣本數龐大而難以實施。雖然完全混合室(well-mixed room, WMR)模式提供了一項可行的替代方案,但其應用仰賴對室內 PM2.5產生率(G)與非通風移除率(K)的精確量化。本研究提出一種可同時估算G與K的數值迭代方法,並將其應用於 WMR 模型以預測教室內 PM2.5濃度,進一步結合學生的時間-活動模式,透過蒙地卡羅模擬法估算其長期 PM2.5 暴露分布。
本研究於台灣典型小學教室中進行,其中一間教室設有兩部新風機(FAUs),另一間使用空氣清淨機(AP)。於室內外同步監測PM2.5及CO2濃度用以推估G及K,並評估模式準確性。結果顯示,使用新風機之教室在講課期間與午休期間的幾何平均數(GM(GSD))分別為 10.7(2.1)與 19.2(1.2)µg/min。使用空氣清淨機之教室在講課期間與午休期間的幾何平均數(GM(GSD))分別為 8.7(3.1)與 23.2(1.7)µg/min。G的峰值與高強度活動(如使用粉筆、清潔與走動)有關。K則皆趨近於零,推測與細懸浮微粒粒徑小以及 FAU及AP提供的高換氣率有關。模型預測值與實測值之間無顯著差異,證實所提出方法的準確性與可靠性。在FAUs正常運作的情境下,學生的長期 PM2.5暴露分布呈現對數常態分布,其 GM(GSD)為 8.5(1.4)µg/m3,95 百分位為 15.1 µg/m3,略高於世界衛生組織(WHO)建議的每日PM2.5暴露限值(15 µg/m3)。在AP正常運作的情境下,學生的長期 PM2.5暴露其 GM(GSD)為 5.0(1.3)µg/m3,95 百分位為 8.4 µg/m3,低於WHO建議之每日PM2.5暴露限值。為避免暴露於過高的CO2濃度,模擬分析使用AP且加強通風下,若要使學生的 95 百分位暴露值維持在 WHO 指引以下,AP所需流率需增加到9 m3/min。
本研究所提出的方法為估算學童室內PM2.5暴露提供了一項實用且具通用性的技術基礎,並有助於強化環境衛生領域對PM2.5暴露健康影響之評估與相應控制策略的制定。
Given the fluctuations in ambient PM2.5 concentrations and the variability of classroom activities, traditional monitoring approaches are often impractical for assessing long-term indoor PM2.5 exposures among schoolchildren due to the substantial sample size required. Although the well-mixed room (WMR) model offers a promising alternative, its application relies on accurate quantification of the indoor PM2.5 generation rate (G) and non-ventilation removal rate (K). This study presents a technique to simultaneously estimate both G and K using a combination of numerical and iterative methods and applies the results to the WMR model for predicting PM2.5 concentrations inside classrooms. Students' time-activity patterns were further integrated to estimate long-term PM2.5 exposure distributions using Monte Carlo simulations.
The study was conducted in two typical elementary school classrooms in Taiwan—one equipped with two fresh air units (FAUs), and the other with an air purifier (AP). PM2.5 and CO2 concentrations were simultaneously measured inside and outside the classrooms to estimate G and K and evaluate model accuracy. In the FAU-equipped classroom, the geometric means (GM (GSD)) of G were 10.7 (2.1) µg/min and 19.2 (1.2) µg/min during lecture sessions and noon rest periods, respectively. In the AP-equipped classroom, the GM (GSD) of G were 8.7 (3.1) and 23.2 (1.7) µg/min for the respective periods. Higher G values were associated with intensive activities such as chalk usage, cleaning, and student movement.
The K was consistently zero (K = 0) in both classrooms, likely due to the small particle size of PM2.5 and the high air exchange rates provided by both FAUs and the AP. No significant differences were found between the measured and model-predicted PM2.5 concentrations, confirming the accuracy and reliability of the proposed approach.
With FAUs in operation, students’ long-term PM2.5 exposure distribution followed a log-normal distribution, with a GM (GSD) of 8.5 (1.4) µg/m3 and a 95th percentile of 15.1 µg/m3—slightly exceeding the WHO daily guideline of 15 µg/m3. Sensitivity analysis highlighted that outdoor PM2.5 concentrations had the greatest influence on students’ exposure. Scenario-based simulation further showed that to maintain students' 95th percentile exposure below the WHO guideline, the GM of outdoor PM2.5 during school hours must not exceed 15.9 µg/m3.
Under AP operation, the GM (GSD) of student exposure was 5.0 (1.3) µg/m3, and the 95th percentile was 8.4 µg/m3, remaining well below the WHO guideline. Simulation analysis also showed that to maintain students’ 95th percentile exposure below the WHO limit while avoiding excessive CO2 accumulation, the AP would need to be supplemented with a ventilation rate of at least 9 m3/min.
In conclusion, the proposed method offers a practical and generalizable approach for estimating indoor PM2.5 exposures among schoolchildren. The techniques developed in this study will contribute to the field of environmental health science by enabling more effective assessment of health impacts associated with PM2.5 exposures
Alameddine, I., Gebrael, K., Hanna, F., & El-Fadel, M. (2022). Quantifying indoor PM2.5 levels and its sources in schools: What role does location, chalk use, and socioeconomic equity play ? Atmospheric Pollution Research, 13(4), 101375. https://doi.org/https://doi.org/10.1016/j.apr.2022.101375
Arnold, S., Ramachandran, G., Kaup, H., & Servadio, J. (2020). Estimating the time-varying generation rate of acetic acid from an all-purpose floor cleaner. Journal of Exposure Science & Environmental Epidemiology, 30(2), 374-382.
ASHRAE. (2011). ASHRAE Fundamentals Handbook, American society of heating, refrigerating and air-conditioning engineers.
Bennett, D. H., & Koutrakis, P. (2006). Determining the infiltration of outdoor particles in the indoor environment using a dynamic model. Journal of Aerosol Science, 37(6), 766-785. https://doi.org/https://doi.org/10.1016/j.jaerosci.2005.05.020
Blondeau, P., Iordache, V., Poupard, O., Genin, D., & Allard, F. (2005). Relationship between outdoor and indoor air quality in eight French schools. Indoor Air, 15(1), 2-12. https://doi.org/10.1111/j.1600-0668.2004.00263.x
Chen, C., & Zhao, B. (2011). Review of relationship between indoor and outdoor particles: I/O ratio, infiltration factor and penetration factor. Atmospheric Environment, 45(2), 275-288. https://doi.org/https://doi.org/10.1016/j.atmosenv.2010.09.048
Chen, C.-Y., Kuo, Y.-C., Wang, S.-M., Wu, K.-R., Chen, Y.-C., & Tsai, P.-J. (2019). Techniques for Predicting Exposures to Polycyclic Aromatic Hydrocarbons (PAHs) Emitted from Cooking Processes for Cooking Workers. Aerosol and Air Quality Research, 19(2), 307-317. https://doi.org/https://doi.org/10.4209/aaqr.2018.09.0346
Chen, C. H., Chan, C. C., Chen, B. Y., Cheng, T. J., & Leon Guo, Y. (2015). Effects of particulate air pollution and ozone on lung function in non-asthmatic children. Environ Res, 137, 40-48. https://doi.org/10.1016/j.envres.2014.11.021
Chen, M., Ren, Z., & Bi, S. (2024). Impact of green space patterns on PM2.5 levels: A local climate zone perspective. Journal of Cleaner Production, 478, 143975. https://doi.org/https://doi.org/10.1016/j.jclepro.2024.143975
Chen, Y.-H., Tu, Y.-P., Sung, S.-Y., Weng, W.-C., Huang, H.-L., & Tsai, Y. I. (2022). A comprehensive analysis of the intervention of a fresh air ventilation system on indoor air quality in classrooms. Atmospheric Pollution Research, 13(4), 101373. https://doi.org/https://doi.org/10.1016/j.apr.2022.101373
Cheng, F.-Y., & Hsu, C.-H. (2019). Long-term variations in PM2.5 concentrations under changing meteorological conditions in Taiwan. Scientific Reports, 9(1), 6635. https://doi.org/https://doi.org/10.1038/s41598-019-43104-x
Chithra, V. S., & Nagendra, S. M. S. (2014). Characterizing and predicting coarse and fine particulates in classrooms located close to an urban roadway. Journal of the Air & Waste Management Association, 64(8), 945-956. https://doi.org/https://doi.org/10.1080/10962247.2014.894483
Costanzo, V., Yao, R., Xu, T., Xiong, J., Zhang, Q., & Li, B. (2019). Natural ventilation potential for residential buildings in a densely built-up and highly polluted environment. A case study. Renewable Energy, 138, 340-353. https://doi.org/https://doi.org/10.1016/j.renene.2019.01.111
Dijkhoff, I. M., Drasler, B., Karakocak, B. B., Petri-Fink, A., Valacchi, G., Eeman, M., & Rothen-Rutishauser, B. (2020). Impact of airborne particulate matter on skin: a systematic review from epidemiology to in vitro studies. Particle and Fibre Toxicology, 17(1), 35. https://doi.org/10.1186/s12989-020-00366-y
Ding, Y., Li, S., Xing, J., Li, X., Ma, X., Song, G., Teng, M., Yang, J., Dong, J., & Meng, S. (2024). Retrieving hourly seamless PM2.5 concentration across China with physically informed spatiotemporal connection. Remote Sensing of Environment, 301, 113901. https://doi.org/https://doi.org/10.1016/j.rse.2023.113901
Dons, E., Van Poppel, M., Panis, L. I., De Prins, S., Berghmans, P., Koppen, G., & Matheeussen, C. (2014). Land use regression models as a tool for short, medium and long term exposure to traffic related air pollution. Science of the total Environment, 476, 378-386.
Dubey, S., Rohra, H., & Taneja, A. (2021). Assessing effectiveness of air purifiers (HEPA) for controlling indoor particulate pollution. Heliyon, 7(9), e07976. https://doi.org/https://doi.org/10.1016/j.heliyon.2021.e07976
Eom, Y. S., Park, B. R., Shin, H. W., & Kang, D. H. (2021). Evaluation of Outdoor Particle Infiltration into Classrooms Considering Air Leakage and Other Building Characteristics in Korean Schools. Sustainability, 13(13).
Gaffney, S., Moody, E., McKinley, M., Knutsen, J., Madl, A., & Paustenbach, D. (2008). Worker exposure to methanol vapors during cleaning of semiconductor wafers in a manufacturing setting. Journal of Occupational and Environmental Hygiene, 5(5), 313-324.
Gao, X., Xu, Y., Cai, Y., Shi, J., Chen, F., Lin, Z., Chen, T., Xia, Y., Shi, W., & Zhao, Z. (2019). Effects of filtered fresh air ventilation on classroom indoor air and biomarkers in saliva and nasal samples: A randomized crossover intervention study in preschool children. Environmental Research, 179(Pt A), 108749. https://doi.org/https://doi.org/10.1016/j.envres.2019.108749
Gaskins, A. J., & Hart, J. E. (2020). The use of personal and indoor air pollution monitors in reproductive epidemiology studies. Paediatr Perinat Epidemiol, 34(5), 513-521. https://doi.org/10.1111/ppe.12599
Goyal, R., & Khare, M. (2011). Indoor air quality modeling for PM10, PM2.5, and PM1.0 in naturally ventilated classrooms of an urban Indian school building. Environmental Monitoring and Assessment, 176(1), 501-516. https://doi.org/10.1007/s10661-010-1600-7
Guerra, S. A., Olsen, S. R., & Anderson, J. J. (2014). Evaluation of the SO2 and NOx offset ratio method to account for secondary PM2. 5 formation. Journal of the Air & Waste Management Association, 64(3), 265-271.
Hines, R., Chen, C.-Y., Nicas, M., & Ramachandran, G. (2025). Estimating the time-varying emission rate of peracetic acid. Annals of Work Exposures and Health, 69(3), 297-309. https://doi.org/10.1093/annweh/wxae100
Hoek, G., Beelen, R., de Hoogh, K., Vienneau, D., Gulliver, J., Fischer, P., & Briggs, D. (2008). A review of land-use regression models to assess spatial variation of outdoor air pollution. Atmospheric Environment, 42(33), 7561-7578. https://doi.org/https://doi.org/10.1016/j.atmosenv.2008.05.057
Hsu, C.-Y., Hsu, W.-T., Mou, C.-Y., Wong, P.-Y., Wu, C.-D., & Chen, Y.-C. (2024). Exposure estimates of PM2.5 using the land-use regression with machine learning and microenvironmental exposure models for elders: Validation and comparison. Atmospheric Environment, 318, 120209. https://doi.org/https://doi.org/10.1016/j.atmosenv.2023.120209
IARC. (2013). Outdoor air pollution a leading environmental cause of cancer deaths. Press release 221 ed. Lyon: International Agency for Research on Cancer.
Kabirikopaei, A., & Lau, J. (2020). Uncertainty analysis of various CO2-Based tracer-gas methods for estimating seasonal ventilation rates in classrooms with different mechanical systems. Building and Environment, 179, 107003. https://doi.org/https://doi.org/10.1016/j.buildenv.2020.107003
Kajbafzadeh, M., Brauer, M., Karlen, B., Carlsten, C., van Eeden, S., & Allen, R. W. (2015). The impacts of traffic-related and woodsmoke particulate matter on measures of cardiovascular health: a HEPA filter intervention study. Occup. Environ. Med., 72(6), 394-400.
Keil, C. B., Simmons, C. E., & Anthony, T. R. (2009). Mathematical Models for Estimating Occupational Exposure to Chemicals. American Industrial Hygiene Association.
Keyes, T., Domingo, R., Dynowski, S., Graves, R., Klein, M., Leonard, M., Pilgrim, J., Sanchirico, A., & Trinkaus, K. (2023). Low-cost PM(2.5) sensors can help identify driving factors of poor air quality and benefit communities. Heliyon, 9(9), e19876. https://doi.org/10.1016/j.heliyon.2023.e19876
Kim, S., Kang, K., Park, D., Na, H., & Kim, T. (2024). Balance point concentration: An indicator for classroom performance against outdoor PM2.5. Building and Environment, 266, 112021. https://doi.org/https://doi.org/10.1016/j.buildenv.2024.112021
Klepeis, N. E., Nelson, W. C., Ott, W. R., Robinson, J. P., Tsang, A. M., Switzer, P., Behar, J. V., Hern, S. C., & Engelmann, W. H. (2001). The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants. J Expo Anal Environ Epidemiol, 11(3), 231-252. https://doi.org/10.1038/sj.jea.7500165
Kloog, I., Ridgway, B., Koutrakis, P., Coull, B. A., & Schwartz, J. D. (2013). Long- and short-term exposure to PM2.5 and mortality: using novel exposure models. Epidemiology, 24(4), 555-561. https://doi.org/https://doi.org/10.1097/EDE.0b013e318294beaa
Lee, H., & Rim, D. (2024). Assessment of airborne transmitted infection risk in classrooms using computational fluid dynamics and machine learning-based surrogate modeling. Journal of Building Engineering, 97, 110760. https://doi.org/https://doi.org/10.1016/j.jobe.2024.110760
Lee, H. J. (2020). Advancing Exposure Assessment of PM2.5 Using Satellite Remote Sensing: A Review. Asian Journal of Atmospheric Environment, 14(4), 319-334. https://doi.org/10.5572/ajae.2020.14.4.319
Li, H., Cai, J., Chen, R., Zhao, Z., Ying, Z., Wang, L., Chen, J., Hao, K., Kinney, P. L., & Chen, H. (2017). Particulate matter exposure and stress hormone levels: a randomized, double-blind, crossover trial of air purification. Circulation, 136(7), 618-627.
Li, S., Cao, S., Duan, X., Zhang, Y., Gong, J., Xu, X., Guo, Q., Meng, X., Bertrand, M., & Zhang, J. J. (2020). Long-term exposure to PM2.5 and Children's lung function: a dose-based association analysis. Journal of Thoracic Disease, 12(10), 6379-6395. https://doi.org/https://doi.org/10.21037/jtd-19-crh-aq-007
Li, Z., Tong, X., Ho, J. M. W., Kwok, T. C. Y., Dong, G., Ho, K.-F., & Yim, S. H. L. (2021). A practical framework for predicting residential indoor PM2.5 concentration using land-use regression and machine learning methods. Chemosphere, 265, 129140. https://doi.org/https://doi.org/10.1016/j.chemosphere.2020.129140
Lim, S., Said, B., Zurba, L., Mosler, G., Addo-Yobo, E., Adeyeye, O. O., Arhin, B., Evangelopoulos, D., Fapohunda, V. T., & Fortune, F. (2024). Characterising sources of PM2· 5 exposure for school children with asthma: a personal exposure study across six cities in sub-Saharan Africa. The Lancet Child & Adolescent Health, 8(1), 17-27.
Lin, C.-C., Lee, M.-K., & Huang, H.-L. (2015). Effects of Chalk Use on Dust Exposure and Classroom Air Quality. Aerosol and Air Quality Research, 15(7), 2596-2608. https://doi.org/10.4209/aaqr.2015.04.0216
Lin, C.-C., & Peng, C.-K. (2010). Characterization of Indoor PM10, PM2.5, and Ultrafine Particles in Elementary School Classrooms: A Review. Environmental Engineering Science, 27(11), 915-922. https://doi.org/10.1089/ees.2010.0175
Lu, C., Xu, H., Meng, W., Hou, W., Zhang, W., Shen, G., Cheng, H., Wang, X., Wang, X., & Tao, S. (2020). A novel model for regional indoor PM2.5 quantification with both external and internal contributions included. Environment International, 145, 106124. https://doi.org/https://doi.org/10.1016/j.envint.2020.106124
Ma, C.-J., Kang, G.-U., & Hamada, M. (2019). Behavior and Exposure of Chalk Dust during Classroom Teaching. Asian Journal of Atmospheric Environment, 13(4), 240-248. https://doi.org/10.5572/ajae.2019.13.4.240
Mainka, A., & Fantke, P. (2022). Preschool children health impacts from indoor exposure to PM2. 5 and metals. Environment international, 160, 107062.
Majumdar, D., Gajghate, D., Pipalatkar, P., & Chalapati Rao, C. (2012). Assessment of airborne fine particulate matter and particle size distribution in settled chalk dust during writing and dusting exercises in a classroom. Indoor and Built Environment, 21(4), 541-551.
Ni, R., Su, H., Burnett, R. T., Guo, Y., & Cheng, Y. (2024). Long-term exposure to PM2.5 has significant adverse effects on childhood and adult asthma: A global meta-analysis and health impact assessment. One Earth, 7(11), 1953-1969. https://doi.org/https://doi.org/10.1016/j.oneear.2024.09.022
Noorian Najafabadi, S. A., Sugano, S., & Bluyssen, P. M. (2022). Impact of Carpets on Indoor Air Quality. Applied Sciences, 12(24), 12989. https://www.mdpi.com/2076-3417/12/24/12989
Nourani, S., Villalobos, A. M., & Jorquera, H. (2024). A methodology for estimating indoor sources contributing to PM 2.5. Environmental Science: Processes & Impacts, 26(12), 2288-2296.
Oh, E., Choi, K. H., Kim, S. R., Kwon, H. J., & Bae, S. (2022). Association of indoor and outdoor short‐term PM2. 5 exposure with blood pressure among school children. Indoor air, 32(3), e13013.
Othman, M., Latif, M. T., & Matsumi, Y. (2019). The exposure of children to PM2. 5 and dust in indoor and outdoor school classrooms in Kuala Lumpur City Centre. Ecotoxicology and Environmental Safety, 170, 739-749.
Park, J. H., Lee, T. J., Park, M. J., Oh, H. N., & Jo, Y. M. (2020). Effects of air cleaners and school characteristics on classroom concentrations of particulate matter in 34 elementary schools in Korea. Build Environ, 167. https://doi.org/10.1016/j.buildenv.2019.106437
Park, S., Song, D., Jo, Y. M., Park, J. H., Lee, T. J., & Koo, J. (2023). Development of air purifier operation guidelines using grey box models for the concentrations of particulate matter in elementary school classrooms. Aerosol Sci Technol, 57(5), 467-485. https://doi.org/10.1080/02786826.2023.2187691
Paunescu, A. C., Attoui, M., Bouallala, S., Sunyer, J., & Momas, I. (2017). Personal measurement of exposure to black carbon and ultrafine particles in schoolchildren from PARIS cohort (Paris, France). Indoor Air, 27(4), 766-779.
Pieters, N., Koppen, G., Van Poppel, M., De Prins, S., Cox, B., Dons, E., Nelen, V., Panis, L. I., Plusquin, M., & Schoeters, G. (2015). Blood pressure and same-day exposure to air pollution at school: associations with nano-sized to coarse PM in children. Environmental health perspectives, 123(7), 737-742.
Rivas, I., Viana, M., Moreno, T., Bouso, L., Pandolfi, M., Alvarez-Pedrerol, M., Forns, J., Alastuey, A., Sunyer, J., & Querol, X. (2015). Outdoor infiltration and indoor contribution of UFP and BC, OC, secondary inorganic ions and metals in PM2.5 in schools. Atmospheric Environment, 106, 129-138. https://doi.org/https://doi.org/10.1016/j.atmosenv.2015.01.055
Room, S. A., Chiu, Y. C., Pan, S. Y., Chen, Y.-C., Hsiao, T.-C., Chou, C. C. K., Hussain, M., & Chi, K. H. (2024). A comprehensive examination of temporal-seasonal variations of PM1.0 and PM2.5 in taiwan before and during the COVID-19 lockdown. Environmental Science and Pollution Research International, 31(21), 31511-31523. https://doi.org/https://doi.org/10.1007/s11356-024-33174-4
Ryan, P. H., & LeMasters, G. K. (2007). A review of land-use regression models for characterizing intraurban air pollution exposure. Inhal Toxicol, 19 Suppl 1(Suppl 1), 127-133. https://doi.org/10.1080/08958370701495998
Sangrador, J. T., Nuñez, M. E., Villarreal, A. B., Cadena, L. H., Jerrett, M., & Romieu, I. (2008). A land use regression model for predicting PM2. 5 in Mexico City. Epidemiology, 19(6), S259.
Schibuola, L., & Tambani, C. (2020). Indoor environmental quality classification of school environments by monitoring PM and CO2 concentration levels. Atmospheric Pollution Research, 11(2), 332-342.
Shi, S., Chen, C., & Zhao, B. (2017). Modifications of exposure to ambient particulate matter: Tackling bias in using ambient concentration as surrogate with particle infiltration factor and ambient exposure factor. Environmental Pollution, 220, 337-347. https://doi.org/https://doi.org/10.1016/j.envpol.2016.09.069
Singh, A., Gatari, M. J., Kidane, A. W., Alemu, Z. A., Derrick, N., Webster, M. J., Bartington, S. E., Thomas, G. N., Avis, W., & Pope, F. D. (2021). Air quality assessment in three East African cities using calibrated low-cost sensors with a focus on road-based hotspots. Environmental Research Communications, 3(7), 075007.
Sloss, L. L., & Smith, I. M. (2000). PM10 and PM2.5: an international perspective. Fuel Processing Technology, 65-66, 127-141. https://doi.org/https://doi.org/10.1016/S0378-3820(99)00081-8
Tang, C. H., Garshick, E., Grady, S., Coull, B., Schwartz, J., & Koutrakis, P. (2018). Development of a modeling approach to estimate indoor-to-outdoor sulfur ratios and predict indoor PM2.5 and black carbon concentrations for Eastern Massachusetts households. Journal of Exposure Science & Environmental Epidemiology, 28(2), 125-130. https://doi.org/10.1038/jes.2017.11
Thatcher, T. L., Lai, A. C., Moreno-Jackson, R., Sextro, R. G., & Nazaroff, W. W. (2002). Effects of room furnishings and air speed on particle deposition rates indoors. Atmospheric environment, 36(11), 1811-1819.
Thornburg, J., Ensor, D. S., Rodes, C. E., Lawless, P. A., Sparks, L. E., & Mosley, R. B. (2001). Penetration of Particles into Buildings and Associated Physical Factors. Part I: Model Development and Computer Simulations. Aerosol Science and Technology, 34(3), 284-296. https://doi.org/10.1080/02786820119886
Tran, D. T., Alleman, L. Y., Coddeville, P., & Galloo, J.-C. (2015). Indoor particle dynamics in schools: Determination of air exchange rate, size-resolved particle deposition rate and penetration factor in real-life conditions. Indoor and Built Environment, 26(10), 1335-1350. https://doi.org/10.1177/1420326X15610798
Van Roosbroeck, S., Jacobs, J., Janssen, N. A., Oldenwening, M., Hoek, G., & Brunekreef, B. (2007). Long-term personal exposure to PM2. 5, soot and NOx in children attending schools located near busy roads, a validation study. Atmospheric Environment, 41(16), 3381-3394.
Wang, F., Meng, D., Li, X., & Tan, J. (2016). Indoor-outdoor relationships of PM2. 5 in four residential dwellings in winter in the Yangtze River Delta, China. Environmental pollution, 215, 280-289.
Wang, J., Lai, S., Ke, Z., Zhang, Y., Yin, S., & Zheng, J. (2014). Exposure assessment, chemical characterization and source identification of PM 2.5 for school children and industrial downwind residents in Guangzhou, China. Environmental Geochemistry and Health, 36, 385-397.
Wang, S.-H., Hung, W.-T., Chang, S.-C., & Yen, M.-C. (2016). Transport characteristics of Chinese haze over Northern Taiwan in winter, 2005–2014. Atmospheric Environment, 126, 76-86. https://doi.org/https://doi.org/10.1016/j.atmosenv.2015.11.043
Wang, X., Zou, Z., Dong, B., Dong, Y., Ma, Y., Gao, D., Yang, Z., Wu, S., & Ma, J. (2019). Association of school residential PM2. 5 with childhood high blood pressure: results from an observational study in 6 cities in China. International Journal of Environmental Research and Public Health, 16(14), 2515.
Were, F. H., Wafula, G. A., Lukorito, C. B., & Kamanu, T. K. (2020). Levels of PM10 and PM2. 5 and respiratory health impacts on school-going children in Kenya. Journal of Health and Pollution, 10(27), 200912.
World Health, O. (2021). WHO global air quality guidelines: particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. World Health Organization. https://iris.who.int/handle/10665/345329
Xu, D., Chen, Y., Wu, L., He, S., Xu, P., Zhang, Y., Luo, J., Ye, X., Chen, Z., & Wang, X. (2020). Acute effects of ambient PM2. 5 on lung function among schoolchildren. Scientific Reports, 10(1), 4061.
Yang, X. Y., Wen, B., Han, F., Wang, C., Zhang, S. P., Wang, J., Xu, D. Q., & Wang, Q. (2020). Acute Effects of Individual Exposure to Fine Particulate Matter on Pulmonary Function in Schoolchildren. Biomed Environ Sci, 33(9), 647-659. https://doi.org/10.3967/bes2020.086
Zhang, Y., Cui, L., Xu, D., He, M. Z., Zhou, J., Han, L., Li, X., & Li, T. (2018). The association of ambient PM2. 5 with school absence and symptoms in schoolchildren: a panel study. Pediatric research, 84(1), 28-33.
校內:2030-06-19公開