| 研究生: |
史順益 Shih, Shun-I |
|---|---|
| 論文名稱: |
苯於高週波電漿中之反應 Reactions of Benzene in the Radio-Frequency Plasma Environment |
| 指導教授: |
林達昌
Lin, Ta-Chang |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 146 |
| 中文關鍵詞: | 電漿 、苯 、多環芳香烴 、反應機制 、分解 |
| 外文關鍵詞: | Plasma, Decomposition, Reaction Mechanism, PAHs, C6H6 |
| 相關次數: | 點閱:126 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用高週波電漿系統,添加氧化劑(O2)或還原劑(H2),將苯(C6H6)於室溫環境下分解,以探討反應後之最終氣體產物特徵及其分布及固體沉積物之特性。此外,本研究也結合多環芳香烴(Polycyclic Aromatic Hydrocarbons, PAHs)之採樣設備與電漿系統,探討苯於電漿環境中分解後,PAHs之生成特徵,並討論PAHs在氣固相間分布之情形。主要操作參數為輸入功率、苯進流濃度(CC6H6)及反應物進流比(O2/C6H6與H2/C6H6比值)。反應物與氣體產物主要以一線上(on-line)之傅利葉轉換紅外光光譜儀(FT-IR)及一GC/MS加以分析。固體物之分析包括X光繞射分析、元素分析及熱值試驗。PAHs之定性與定量則以GC/MS為之。
實驗結果顯示,在C6H6/Ar RF電漿系統中,乙炔(C2H2)係唯一之氣態產物。C2H2之總進流碳轉化率(YC2H2)係隨著CC6H6之增加而增加,卻隨著輸入功率之增加而減少。在C6H6/H2/Ar系統中,除C2H2之外,尚發現CH4、C2H6與C2H4等氣態碳氫化合物,其產量均隨著H2/C6H6比值之增加而增加。上述之結果指出,添加H2(輔助氣體)於苯電漿中,有助於諸如CH4、C2H4、C2H6等富氫物種之生成。在C6H6/O2/Ar系統中,C6H6可被完全氧化分解為CO2、CO與H2O,且並未發現酚(phenol)。固體物之分析發現,碳沉積中含高含量之碳,熱值高達7,000 kcal/kg,其性質類似於無煙煤。此外,文中亦建構與討論可能之反應路徑。
在C6H6/Ar與C6H6/H2/Ar系統中均有PAHs生成。在所有操作條件下,就個別PAH而言,Nap為21種PAHs中之最優勢物種,PA、CHR次之。如BaP、DBA 及BbF之高環數PAHs不易於高輸入功率且高CC6H6下生成。PAHs之產量(YPAH)係隨著環數之增加而減少。在低輸入功率下,增加CC6H6會提高YPAH,但是添加H2為輔助氣體則將抑制PAHs之生成。高輸入功率或添加O2非但有效地抑制PAHs之生成,甚且完全摧毀C6H6。由於酚(phenol)並未出現在C6H6/O2/Ar系統中之氣體產物中,因此本研究排除其為中間產物之可能性而建議H-abstraction-C2H2-addition路徑為PAHs生成之主要機制。在2%之CC6H6下,C6H6/Ar、C6H6/H2/Ar與C6H6/O2/Ar三系統中總-PAHs之氣相分布佔有20-95.3%。本研究建議,氣相PAHs實不容忽視,尤其是在高輸入功率且高CC6H6下之C6H6/Ar系統,或是C6H6/O2/Ar系統。
因應未來石油之短缺,在本研究之C6H6/Ar與C6H6/H2/Ar系統中所產生之最終氣體產物(包括CH4、C2H2、C2H4與C2H6),值得回收與再利用,且對於現有之燃料而言為一有用之替代品。本研究中生成固體碳沉積之性質類似無煙煤。除了作為替代燃料之外,這些固體副產物應該以諸如濾袋式集塵器(bag house)之空氣污染防制設備加以控制。此外,氣相之PAHs亦應該以諸如活性碳吸附之設備加以控制。
This study employed radio-frequency (RF) plasma for decomposing the benzene (C6H6) vapor, and examined its gaseous products, solid depositions and polycyclic aromatic hydrocarbons (PAHs) after reaction. The operational parameters were the applied RF power, C6H6 feed concentration (CC6H6) and the mixing ratio of reactants (O2/C6H6 and H2/C6H6). The reactants and gaseous products were analyzed mainly by using both an on-line Fourier transform infrared (FT-IR) spectrometer and a gas chromatograph. Analyses for solid deposition included Electron Spectroscopy for Chemical Analysis (ESCA), element analysis and heat value analysis. Gaseous products C2H2, C2H4, C2H6, CH4, CO2, and CO were detected and discussed. The identification and quantification for PAHs were accomplished by using a GC/MS. The reaction mechanisms were elucidated and the treatment processes were evaluated.
The analytical results demonstrate that, in the C6H6/Ar plasma, C2H2 is the sole gaseous product detected. The fraction of total carbon input converted into C2H2 (YC2H2) increased with increasing CC6H6, but decreased with increasing input power. In the C6H6/H2/Ar system, in addition to C2H2, CH4, C2H4, and C2H6 were also detected, and their yields increased with increasing H2/C6H6 ratio. The above results indicate that the addition of H2 (auxiliary gas) achieves the benefit of creating hydrogen-rich species like CH4, C2H4 and C2H6. In the C6H6/O2/Ar system, C6H6 is totally oxidized into CO2, CO, and H2O, and no measurable phenol is found. Analyses of solid depositions revealed that the carbon depositions were similar to those of anthracite. The carbon deposition has a heat value of 7,000 kcal/kg. Additionally, the possible reaction pathways were also proposed and discussed.
PAHs were formed in both C6H6/Ar and C6H6/H2/Ar systems. In terms of individual PAHs, naphthalene (C10H8) was the predominant species found among the 21 PAHs under all operational conditions, while phenanthrene and chrysene were the next abundant. High-ring PAHs did not form easily in the C6H6/Ar and C6H6/H2/Ar system, especially at high input power and high CC6H6 for the former system. Yields of PAHs with different ring numbers decreased as their ring numbers increased. At low input power, increasing CC6H6 would promote yields of PAHs, while adding hydrogen as the auxiliary gas suppressed PAHs formation. Higher input power or addition of oxygen not only effectively suppresses PAHs formation but also completely destroys C6H6. Owing to the absence of the principal intermediate species, phenol (C6H5OH), from the gas products of C6H6/O2/Ar system, H-abstraction-C2H2-addition pathway is proposed as the primary mechanism for PAHs formation in the present study. Gas phase distribution of total-PAHs accounts for 20~95.3% at 2% of CC6H6 among C6H6/Ar, C6H6/H2/Ar and C6H6/O2/Ar systems. This study suggests that gas-phase PAHs should not be ignored, particularly in C6H6/Ar systems under high input power and high CC6H6, or in C6H6/O2/Ar systems.
Due to predictions of a future oil shortage, this study mentions that these final gas products (including CH4, C2H2, C2H4, and C2H6) formed in the C6H6/Ar and C6H6/H2/Ar RF plasma systems are worthy of recovery and reuse, and could provide useful alternatives to existing fuels. Besides being the alternative fuel, these solid by-product should be controlled by employing air pollutant control devices, such as bag house. In practice, these gas-phase PAHs should be removed using an air pollution control device, for example, activated carbons.
參考文獻
Arno, J. and J. W. Bevan, “Detoxification of Trichloroethylene in a Low-Pressure Surface Wave Plasma Reactor”, Environmental Science & Technology, Vol. 30, pp. 2427-2431, 1996.
Atkinson, R., J. Arey, A. Winer and B. Zielinska, A Survey of Ambient Concentrations of Selected PAH at Various Locations in California, University of California, Riverside, CA, USA, 1988.
Bauschlicher Jr., C. W. and A. Ricca,“Mechanism for Polycyclic Aromatic Hydrocarbon (PAH) Growth”, Chemical Physics Letters, Vol. 326, pp. 283-287, 2000.
Bauer, S. H. and C. F. Aten,“Absorption Spectra of Polyatomic Molecules at High Temperatures. Ⅱ. Benzene and Perfluorobenzene. Kinetics of the Pyrolysis of Benzene”, The Journal of Chemical Physics, Vol. 39(5), pp. 1253-1260, 1963.
Bermudez, G. and L. Pfefferle,“Laser Ionization Time-of Flight Mass Spectrometry Combined with Residual Gas Analysis for the Investigation of Moderate Temperature Benzene Oxidation”, Combustion and Flame, Vol. 100, pp. 41-51, 1995.
Boenig, H. V., Fundamentals of Plasma Chemistry and Technology; Technomic Publishing Co., Inc.: Lancaster, USA, 1988.
Breitbarth, F. W., D., Berg, K., Dumke and H. -J.,Tiller,“Investigation of the Low-Pressure Plasma-Chemical Conversion of Fluorocarbon Waste Gases”, Plasma Chemistry and Plasma Processing, Vol. 17, pp. 39-57, 1997.
Cal, M. P., and M. Schluep,“Destruction of Benzene with Non-Thermal Plasma in Dielectric Barrier Discharge Reactors”, Environmental Progress, Vol. 20(3), pp. 151-156, 2001.
Carey, P. M., Air toxics emissions from motor vehicles. Ann Arbor, MI: U.S. Environmental Protection Agency, Office of Mobile Sources, EPA Report no. EPA-AA-TSS-PA-86-5, 1987.
Cataldo, F.,“Ultrasound-Induced Cracking and Pyrolysis of Some Aromatic and Naphthenic Hydrocarbons”, Ultrasonics Sonochemistry, Vol. 7, pp. 35-43, 2000.
Catoire, V, P. A. Ariya and G. W. Harris,“FTIR Study of the Cl- and Br-Atom Initiated Oxidation of Trichloroethylene”, International Journal of Chemical Kinetics, Vol. 29(9), pp. 695-704, 1997.
Chai, Y. and L. D. Pfefferle,“An Experimental Study of Benzene Oxidation at Fuel-Lean and Stoichiometric Equivalence Ratio Conditions”, Fuel, Vol. 77(4), pp. 313-320, 1998.
Chang, J. S., K. G., Kostov, K., Urashima, T., Yamamoto, Y., Okayasu, T., Kato, T., Iwaizumi and K., Yoshimura,“Removal of NF3 from Semiconductor-Process Flue Gases by Tandem Packed-Bed Plasma and Adsorbent Hybrid Systems”, IEEE Transactions on Industry Applications, Vol. 36, pp. 1251-1259, 2000.
Chen, F. F. “Introduction to Plasma Physics and Controlled Fusion, Vol. I Plasma Physics”, 2nd Edition, Plenum Press: New York, 1983.
Chu, M. M. L. and C. W. Chen, “Evaluation and Estimation of Potential Carcinogenic Risks of Polynuclear Aromatic Hydrocarbons”, Paper presented at the Symposium on Polycyclic Aromatic Hydrocarbons in the Workplace, Pacific Rim Risk Conference, Honolulu, HI, 1984.
Clement Associates, Inc. (Clement), “Comparative Potency Approach for Estimating the Cancer Risk Associated with Exposure to Mixtures of Polycyclic Aromatic Hydrocarbons (Interim Final Report)”, Prepared for the EPA under Contract 68-02-4403, ICF-Clement Associates, Fairfax, VA, April 1988.
Demidiouk, V., S. I. Moon and J. O. Chae,“Toluene and Butyl Acetate Removal from Air by Plasma-Catalytic System”, Catalysis Communication, Vol. 4, pp. 51-56, 2003.
Dias, J. R., Handbook of Polycyclic Hydrocarbons: Part A: Benzenoid Hydrocarbons, Elsevier, Amsterdam, 1987.
Dorr, G., M. Hippelein, H. Kaupp and O. Hutzinger,“Baseline Contamination Assessment for a New Resource Recovery Facility in Germany: Part Ⅵ: Levels and Profiles of Polycyclic Aromatic Hydrocarbons (PAH) in Ambient Air”, Chemosphere, Vol. 33(8), pp. 1569-1578, 1996.
Ebert, L. B., Polynuclear Aromatic Compounds, American Chemical Society, Washington, D. C., 1988.
Eliasson, B. and U. Kogelschatz,“Nonequilibrium Volume Plasma Chemical Processing”, IEEE Tran. Plasma Sci., Vol. 19, pp. 1063-1077, 1991.
Fincke, J. R., R. P. Anderson, T. A. Hyde and B. A. Detering,“Plasma Pyrolysis of Methane to Hydrogen and Carbon Black”, Ind. Eng. Chem. Res., Vol. 41, pp. 1425-1435, 2002.
Fornasiero, D., F. Li, J. Ralston and R. St. C. Smart,“Oxidation of Galena Surfaces 1. X-Ray Photoelectron Spectroscopic and Dissolution Kinetics Studies”, Journal of Colloid and Interface Science, Vol. 164, pp. 333-344, 1994.
Gernot, G., Environment Carcinogens: Polycyclic Aromatic Hydrocarbons, CRC Press, Boca Raton, FL, USA, 1983.
Grill, A., Cold Plasma in Materials Fabrication: From Fundamentals to Applications; The Institute of Electrical and Electronics Engineers, Inc., New York, USA, 1994.
Gueret, C., M. Daroux and Francis Billaud,“Methane Pyrolysis: Thermodynamics”, Chemical Engineering Science, Vol. 52(5), pp. 815-827, 1997.
Gyula, K., V. P. Zita, R. Gabor and H. Jozsef,“Distribution of Polycyclic Aromatic Hydrocarbons on Atmospheric Aerosol Particles of Different Sizes”, Atmos. Res., Vol. 46, pp. 253-261, 1998.
Handa, T., T. Yamamura, Y. Kato, S. Saito and T. Ishii,“Factor Analysis and Derivation of an Experimental Equation on Polynuclear Aromatic Hydrocarbon Emissions from Automobiles”, Environ. Sci. Technol., Vol. 113, pp. 1079-1081, 1979.
Herlitz, H. G.,“Plasma technology”, Environ. Sci. Technol., Vol. 20(11), pp. 1102-1105, 1986.
Hou, K. C. and H. B. Palmer,“The Kinetics of Thermal Decomposition of Benzene in a Flow System ”, J. Phys. Chem., Vol. 69(3), pp. 863-868, 1965.
Hsieh, L. T., G. C. Fang, H. H. Yang, Y. F. Wang, M. C. Tsao and W. T. Liao,“PAHs Formation in the Depositions in a Methyl tert-Butyl Ether/Ar, a Methyl tert-Butyl Ether/O2/Ar and a Methyl tert-Butyl Ether/H2/Ar RF Plasma Environment”, Plasma Chemistry and Plasma Processing, Vol. 22(4), pp. 639-658, 2002a.
Hsieh, L. T., G. C. Fang, H. H. Yang, Y. F. Wang and M. C. Tsao,“Effect of Input Power and Feeding Concentration on MTBE Decomposition Using an RF Plasma Reactor”, J. Chem. Technol. Biotechnol., Vol. 77, pp. 195-204, 2002b.
Hsieh, L. T., W. J. Lee, C. Y. Chen, M. B. Chang and H. C. Chang,“Converting Methane by Using an RF Plasma Reactor”, Plasma Chemistry and Plasma Processing, Vol. 18, pp. 215-239, 1998a.
Hsieh, L. T., W. J. Lee, C. T. Li, C. Y. Chen, Y. F. Wang and M. B. Chang, “Decomposition of Carbon Dioxide in the RF Plasma Environment“, J. Chem. Technol. Biotechnol., Vol. 73, pp. 432-442, 1998b.
Hsieh, L. T., W. J. Lee, C. Y. Chen, Y. P. G. Wu, S. J. Chen and Y. F. Wang, “Decomposition of Methyl Chloride by Using an RF Plasma Reactor”, Journal of Hazardous Materials, Vol. 63, pp. 69-90, 1998c.
IARC,“Overall evaluations of carcinogenicity: An updating of IARC monographs volumes 1 to 42”, IARC monographs on the evaluation of carcinogenic risk of chemicals to humans, Supplement 7, pp. 120-122, 1987.
Itoh, H., Y., Taheyama, M., Ikeda, K., Satoh, Y., Nakao and H., Tagashira, “Spectroscopic and Image Intensified Investigations of RF Plasmas in H2 and CH4 mixtures”, IEE Proceedings. A, Science, Measurement and Technology, Vol. 141, pp. 95-98, 1994.
Josephson, J.,“Other plasma technology business”, Environ. Sci. Technol., Vol. 20(11), pp. 1104, 1986.
Kiefer, J. H., L. J. Mizerka, M. R. Patel and H.-C. Wei,“A Shock Tube Investigation of Major Pathways in the High-Temperature Pyrolysis of Benzene”, J. Phys. Chem., Vol. 89, pp. 2013-2019, 1985.
Kim, H. H., Y. H. Lee, A. Ogata and S. Futamura,“Plasma-Driven Catalyst Processing Packed with Photocatalyst for Gas-Phase Benzene Decomposition”, Catalysis Communication, Vol. 4, pp. 347-351, 2003.
IARC,“Overall Evaluations of Carcinogenicity: An Updating of IARC Monographs Volumes 1 to 42”, IARC Monographs on the Evaluation of Carcinogenic Risk of Chemicals to Humans, Supplement 7, pp. 120-122, 1987.
Lee, W. H., J. Y. Kim, Y. K. Ko, P. J. Reucroft and J. W. Zondlo,“Surface Analysis of Carbon Black Waste Materials from Tire Residues”, Applied Surface Science, Vol. 141, pp. 107-113, 1999.
Lee, W. H. and P. J. Reucroft,“Vapor Adsorption on Coal- and Wood-Based Chemically Activated Carbons (I) Surface Oxidation States and Adsorption of H2O”, Carbon, Vol. 37, pp. 7-14, 1999.
Lee, W. J., C. Y. Chen, W. C. Lin, Y. T. Wang and C. J. Chin,“Phosgene formation from the decomposition of 1,1-C2H2Cl2 contained gas in an RF plasma reactor”, Journal of Hazardous Materials, Vol. 48, pp. 51-67, 1996.
Lee, W. J., Y. F. Fang, T. C. Lin, Y. Y. Chen, W. C. Lin, C. C. Ku and J. T. Cheng, “PAH Characteristics in the Ambient Air of Traffic-Source. ”, Sci. total Environ., Vol. 159, pp. 185-200, 1995.
Li, C. H., R. Yang, M. Shih, P. J. Tsai, L. T. Hsieh and C. Y. Chen,“Reaction Mechanism of 1,2-dichloroethane/O2/Ar in the Cold Plasma Environment”, Chemical Engineering Journal, Vol. 92, pp. 177-184, 2003.
Li, C. K. and R. M. Kamens,“The Use of Polycyclic Aromatic Hydrocarbons as Source Signatures in Receptors Modeling”, Atmos. Environ., Vol. 27A (4), pp. 523-532, 1993.
Li, C. T., W. J. Lee, C. Y. Chen, and Y. T. Wang,“CH2Cl2 Decomposition by Using a Radio-Frequency Plasma System”, J. Chem. Technol. Biotechnol., Vol. 66, pp. 382-388, 1996.
Liao, W. T., W. J. Lee, C.Y. Chen, L. T. Hsieh and C. C. Lai,“Decomposition of Ethoxyethane in the Cold Plasma Environment”, J. Chem. Technol. Biotechnol., Vol. 75, pp. 817-827, 2000.
Liao, W. T., W. J. Lee, C. Y. Chen and M. Shih,“Decomposition of Ethylene Oxide in the RF Plasma Environment”, Environmental Technology, Vol. 22, pp. 165-173, 2001.
Lindstedt, R. P. and G. Skevis, “Detailed Kinetic Modeling of Premixed Benzene Flames”, Combustion and Flame, Vol. 99, pp. 551-561, 1994.
Marinov, N. M., W. J. Pitz, C. K. Westbrook, A. M. Vincitore, M. J. Castaldi, S. M. Senkan and C. F. Melius,“Aromatic and Polycyclic Aromatioc Hydrocarbon Formation in a Laminar Premixed n-Butane Flame”, Combustion and Flame, Vol. 114, pp. 192-213, 1998.
McCorkle, D. L., W. Ding, C. Y. Ma and L. A. Pinnaduwage,“Dissociation of Benzene in a Pulsed Glow Discharge”, Journal of Applied Physics, Vol. 86(7), pp. 3550-3557, 1999.
McEnally, C. S. and L. D. Pfefferle,“The Effects of Slight Premixing on Fuel Decomposition and Hydrocarbon Growth in Benzene-Doped Methane Nonpremixed Flames”, Combustion and Flame, Vol. 129, pp. 305-323, 2002.
Mi, H. H., W. J. Lee, T. L. Wu, T. C. Lin, L. C. Wang and H. R. Chao,“PAH Emission from a Gasoline-Powered Engine”, J. Environ. Sci. Health, Vol. A31(8), pp. 1981-2003, 1996.
Miller, G. P. and J. K. Baird, “Radio Frequency Plasma Decomposition of Ammonia: A Comparison with Radiation Chemistry Using the G Value”, Journal of Physical Chemistry, Vol. 97, pp. 10984-10988, 1993.
Mimura, K.,“Synthesis of Polycyclic Aromatic Hydrocarbons from Benzene by Impact Shock: Its Reaction Mechanism and Cosmochemical Significance”, Geochimica et Cosmochimica Acta, Vol. 59(3), pp. 579-591, 1995.
Miyake, T., M. Hamada, Y. Sasaki and M. Oguri,“Direct Synthesis of Phenol by Hydroxylation of Benzene with Oxygen and Hydrogen”, Applied Catalysis, Vol. 131, pp. 33-42, 1995.
Nisbet, C. and P. LaGoy,“Toxic Equivalency Factors (TEFs) for Polycyclic Aromatic Hydrocarbons (PAHs)”, Regul Toxicol Pharmocol, Vol. 16, pp. 290-300, 1992.
Ogata, A., K. Yamanouchi, K. Mizuno, S. Kushiyama and T. Yamamoto,“Oxidation of Dilute Benzene in an Alumina Hybrid Plasma Reactor at Atmospheric Pressure”, Plasma Chemistry and Plasma Processing, Vol. 19(3), pp. 383-394, 1999.
Ogata, A., N. Shintani, K. Yamanouchi, K. Mizuno, S. Kushiyama and T. Yamamoto,“Effect of Water Vapor on Benzene Decomposition Using a Nonthermal-Discharge Plasma Reactor”, Plasma Chemistry and Plasma Processing, Vol. 20(4), pp. 453-467, 2000.
Othmer K., Encyclopedia of Chemical Technology, Volume 3, Antibiotics (Phenazines) to Bleaching Agents, John Wiley & Sons, US, pp.744-771, 1992.
Pedersen, P. S., J. Ingwersen, T. Nielsen and E. Larsen, “Effects of Fuel, Lubricant, and Engine Operating Parameters on Polycyclic Aromatic Hydrocarbons”, Environ. Sci. Technol., Vol. 14, pp. 71-79, 1980.
Popovici, D., G. Czeremuzkin, M. Meunier and E. Sacher,“Laser-Induced Metal-Organic Chemical Vapor Deposition (MOCVD) of Cu(hfac)(TMVS) on Amorphous Teflon AF1600: an XPS Study of the Interface”, Applied Surface Science, Vol. 126, pp. 198-204, 1998.
Richter, H., W. J. Grieco and J. B. Howard,“Formation Mechanism of Polycyclic Aromatic Hydrocarbons and Fullerenes in Premixed Benzene Flames”, Combustion and Flame, Vol. 119, pp. 1-22, 1999.
Sekiguchi, H.,“Catalysis Assisted Plasma Decomposition of Benzene Using Dielectric Barrier Discharge”, The Canadian Journal of Chemical Engineering, Vol. 79, Aug., pp. 512-516, 2001.
Sheu, H. L., W. J. Lee, C. C. Su, H. R. Chao and Y. C. Fan,“Dry Deposition of Polycyclic Aromatic Hydrocarbons in Ambient Air”, Journal of Environmental Engineering, Dec., pp. 1101-1109, 1996.
Shih, S. I., T. C. Lin and M. Shih,“Decomposition of Benzene in the RF Plasma Environment Part I: Formation of Gaseous Products and Carbon Depositions”, Journal of Hazardous Materials, In press, 2004a.
Shih, S. I., T. C. Lin and M. Shih,“Decomposition of Benzene in the RF Plasma Environment Part II: Formation of Polycyclic Aromatic Hydrocarbons”, Journal of Hazardous Materials, In press, 2004b.
Shih, M., W. J. Lee and C.Y. Chen,“Decomposition of SF6 and H2S Mixture in Radio Frequency Plasma Environment“, Ind. Eng. Chem. Res., Vol. 38, pp. 3199-3210, 2003.
Shih, M., W. J. Lee and C. H. Tsai,“Decomposition of SF6 in an RF Plasma Environment”, J. Air & Waste Manage. Assoc., Vol. 52, pp. 1274-1280, 2002.
Shimozuma, M., G. Tochitani and H. Tagashira,“Optical Emission Diagnostics of H2+CH4 50Hz-13.56MHz Plasmas for Chemical Vapor Deposition”, Journal of Applied Physics, Vol. 70, pp. 645-648, 1991.
Singh, H. J. and R. D. Kern,“Pyrolysis of Benzene behind Reflected Shock Waves”, Combustion and Flame, Vol. 54, pp. 49-59, 1983.
Slysh, R. S. and C. R. Kinney,“Some Kinetics of the Carbonization of Benzene, Acetylene and Diacetylene at 1200°”, J. Phys. Chem., Vol. 65, pp. 1044-1045, 1961.
Smith, R. D. and A. L. Johnson,“Mass Spectrometric Study of the High Temperature Chemistry of Benzene”, Combustion and Flame, Vol. 51, pp. 1-22, 1983.
Suhr, H., Techniques and Applications of Plasma Chemistry, J. R. Hollahan and A. T. Bell, eds., Wiley, New York, p. 57, 1974.
Suhr, H. and U. Kunzel, Ann. Chem., 2057, 1979.
Tezuka, M. and T. Yajima, “Oxidation of Aromatic Hydrocarbons with Oxygen in a Radiofrequency Plasma”, Plasma Chemistry and Plasma Processing, Vol. 16(3), pp. 329-340, 1996.
Tregrossi, A., A. Ciajolo and R. Barbella,“The Combustion of Benzene in Rich Premixed Flames at Atmospheric Pressure”, Combustion and Flame, Vol. 117, pp. 553-561, 1999.
Tsai, C. H., W. J. Lee, C. Y. Chen, P. J. Tsai, G. C. Fang and M. Shih,“Difference in Conversions Between Dimethyl Sulfide and Methanethiol in a Cold Plasma Environment“, Plasma Chemistry and Plasma Processing, Vol. 23 (1), pp. 141-157, 2003.
Tsai, C. H., W. J. Lee, C. Y. Chen, W. T. Liao and M. Shih,“Formation of Solid Sulfur by Decomposition of Carbon Disulfide in the Oxygen-Lean Cold Plasma Environment“, Ind. Eng. Chem. Res., Vol. 41 (11), pp. 1412-1418, 2002.
Tsai, C. H., W. J. Lee, C. Y. Chen and W. T. Liao,“Decomposition of CH3SH in a RF Plasma Reactor: Reaction Products and Mechanisms“, Ind. Eng. Chem. Res., Vol. 40 (11), pp. 2384-2395, 2001.
U.S. Environmental Protection Agency,“Locating and estimating air emission from sources of polycyclic organic matter (POM)”, EPA-45014-84-007, 1987.
Wallington, T. J., L. M. Andino, A. R. Potts, S. J. Rudy, W. O. Sigle, Z. Zhang, M. J. Kurylo and R. E. Hule,“Atmospheric Chemistry of Automotive Fuel Additives: Diisopropyl Ether”, Environ. Sci. Technol., Vol. 27, pp. 98-104, 1993.
Wang, H. and M. Frenklach,“A Detailed Kinetic Modeling Study of Aromatics Formation in Laminar Premixed Acetylene and Ethylene Flames” , Combustion and Flame, Vol. 110, pp. 173-221, 1997.
Wang, H. and M. Frenklach,“Calculations of Rate Coefficients for the Chemically Activated Reactions of Acetylene with Vinylic and Aromatic Radicals”, J. Phys. Chem., Vol. 98, pp. 11465-11489, 1994.
Wang, Y. F., W. J. Lee, C.Y. Chen, Y. P. Greg Wu and G. P. Chang-Chien, “Reaction Mechanism in Both a CCl2F2/O2/Ar and a CCl2F2/H2/Ar RF Plasma Environment“, Plasma Chemistry and Plasma Processing, Vol. 20 (4), pp. 469-494, 2000.
Wang, Y. F., W. J. Lee, C. Y. Chen and L. T. Hsieh,“Reaction Mechanism in Both a CHF3/O2/Ar and CHF3/H2/Ar Radio Frequency Plasma Environment”, Ind. Eng. Chem. Res., Vol. 38, pp. 3199-3210, 1999a.
Wang, Y. F., W. J. Lee, C. Y. Chen and L. T. Hsieh,“Decomposition of Dichlorodifluoromethane by Adding Hydrogen in a Cold Plasma System”, Environmental Science & Technology, Vol. 33, pp. 2234-2240, 1999b.
Westerholm, R., T. E. Alsberg, Å. B. Frommelin, M. E. Strandell, U. Rannug, L. Winquist, V. Grigoriadis and K. Egebäck,“Effects of Fuel Polycyclic Aromatic Hydrocarbon Content on the Emission of Polycyclic Aromatic Hydrocarbons and Other Mutagenic Subatances from a Gasoline-Fueled Automobile”, Environ. Sci. Technol., Vol. 22, pp. 925-930, 1988.
Yang, H. H., W. J. Lee, H. H. Mi, C. H. Wong and C. B. Chen,“PAH Emissions Influenced by Mn-Based Additive and Turbocharging from a Heavy-Duty Diesel Engine”, Environment International, Vol. 24, No. 4, pp. 389-403, 1998.
Yamasaki, H., K. Kuwata and H. Miyamoto,“Effects of Ambient Temperature on Aspects of Airborne Polycyclic Aromatic Hydrocarbons ”, Environ. Sci. Technol., Vol. 16, pp. 189-194, 1982.
Zandere, M.,“Physical and chemical properties of polycyclic aromatic hydrocarbons”, Marcel Dekker, New York, 1985.
Zhang, H. Y. and J. T. Mckinnon,“Elementary Reaction Modeling of High-Temperature Benzene Combustion”, Combust. Sci. and Tech., Vol. 107, pp. 261-300, 1995.
http://www.epa.gov/otaq/regs/toxics/airtoxlb.pdf
http://www.ket.org/Trips/Coal/AGSMM/agsmmtypes.html
李俊德、楊仁泊、李文智、陳志勇,“ 高週波電漿系統中電極材料及反應器型式對二氯乙烷氣體分解之影響“, 第十二屆空氣污染控制技術研討會論文專輯,pp. 597-604,1995。
袁中新,洪昭南,戴哲生,”以高週波電漿反應器分解氨氣之探討”,第九屆空氣污染控制技術研討會,pp. 573,1992。
黃健勝,張國慶,”廢棄物及廢氣熱電漿裂解技術” 第七屆廢棄物處理技術研討會,pp. 323,1992。
堤井信力,”現代電漿工程及其應用”,電漿工程技術研討會,雲林科技大學,2001。
趙木榮,螢光菌對空氣中半揮發性有機物之毒性測試方法建立及其運用,國立成功大學環境工程學系,博士論文,2000。
賴耿陽 編譯,「電漿工學的基礎」,復文書局,1986。
謝連德,高週波電漿反應器中二氧化碳及甲烷之反應機制,國立成功大學環境工程學系,博士論文,1998。