| 研究生: |
陳汶炫 Chen, Wen-Shiuan |
|---|---|
| 論文名稱: |
太陽風之電場與中磁緯度電離層全電子含量之相關性研究 A Correlation Study on Solar Wind Electric Fields and Middle Magnetic Latitude Ionospheric Total Electron Content |
| 指導教授: |
談永頤
Tam, Sunny W.Y. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 太空天文與電漿科學研究所 Institute of Space, Astrophysical and Plasma Sciences(ISAPS) |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 太陽風之電場 、電離層全電子含量 |
| 外文關鍵詞: | Solar Wind Electric Field, Ionospheric Total Electron Content |
| 相關次數: | 點閱:107 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
太陽風之場量例如星際磁場(IMF)和太陽風的速度會影響到電離層的電漿特性。本篇研究結合了WIND太空船所觀測到的太陽風之磁場,離子速度和離子密度以及福衛三號之掩星觀測儀所觀測的電離層電子密度。我們使用2008年八月至十月由此兩任務所測得之資料,檢視太陽風之電場與電離層的全電子含量(TEC)之可能的相關性。假設E∝Δ(-V×B)以及E∝-V×B,經由比較不同情況下之相關係數,我們檢視電離層的感應電場對中磁緯度全電子含量之影響。我們的研究結果顯示在E∝-V×B的假設下,會與電離層內由太陽風所造成的感應電場較有相關性。當南向星際磁場以及持續長時間的南向星際磁場,在中磁緯度午後電離層全電子含量與其有著更良好的相關性。
The conditions of the solar wind field quantities, such as the interplanetary magnetic field (IMF) and the solar wind velocity, may affect the plasma properties in the ionosphere. This study combines the observations of solar wind magnetic field, ion velocity and ion density by the WIND spacecraft and the observations of ionospheric electron density by the GPS Occulation Experiment (GOX) on the satellites of the FORMOSAT-3/COSMIC (FS3C) mission. We use the data from the two missions during the period August to October 2008 to examine the possible correlation between the solar wind electric field and the total electron content (TEC) in the ionosphere. By comparing the correlation coefficients at middle magnetic latitudes under different conditions, we examine the influence on the TEC by the induced electric field in the ionosphere under the assumptions of E∝Δ(-V×B) and E∝-V×B. The results of our studies suggest that the assumption of E∝-V×B may be more relevant to the form of the ionospheric electric field induced by the solar wind. Its association with the ionospheric TEC at middle magnetic latitudes and in the early afternoon is more correlated when the IMF is southward and remains southward for longer duration of time.
Appleton, E. V., Two anomalies in the ionosphere, Nature, 157, 691, 1946.
Cowley, S. W. H., Davies, J. A., Grocott, A., Khan, H., Lester, M., McWilliams, K. A., Milan, S. E., Provan, G., Sandholt, P. E., Wild, J. A., and Yeoman, T. K., Solar-wind-magnetosphere-ionosphere interactions in the Earth's plasma environment, Phil. Trans. R. Soc. Lond. A 2003 361, 113-126, 2002.
Davis, K., Ionospheric Radio, Peter Peregrinus Ltd, London, pp. 70-73, 1990.
Doherty, P. H., Klobuchar, J. A., and Kunches, J. M., Eye on the Ionosphere: The correlation between solar 10.7 cm radio flux and ionospheric range delay, GPS Solutions, 3, 75-79, 2000.
Hajj, G. A., and Romans, L. J., Ionospheric electron density profiles obtained with the Global Positioning System: Results from the GPS/MET experiment, Radio Sci., 33, 175-190, 1998.
Hernandez, M. K., Utilizing COSMIC radio occultation soundings to estimate convective potentials over oceans, http://library.ucar.edu/, 2007.
Juusola, L., Observations of the solar wind-magnetosphere-ionosphere coupling, Ph. D. thesis, University of Helsinki, Helsinki, Finland, 2009.
Kelley, M. C., Fejer, B. G., and Gonzales, C. A., An explanation for anomalous equatorial ionospheric electric fields associated with a northward turning of the interplanetary magnetic field, Geophysical Research Letters, 6, 301-304, 1979.
Kelley, M. C., and Heelis, R. A., The Earth’s Ionosphere, Academic Press, San Diego, USA, 105-107, 1989.
Kivelson, M. G., and Russell, C. T., Introduction to Space Physics, Cambridge University Press, New York, 1995.
Kursinski, E. R., Hajj, G. A., Leroy, S. S., and Herman, B., The GPS radio occultation technique, Terr. Atmos. Ocean. Sci. 11, 53-114, 2000.
Lin. C. H., Hsiao, C. C., Liu, J. Y., and Liu, C. H., Longitudinal structure of the equatorial ionosphere: Time evolution of the four-peaked EIA structure, Journal of Geophysical Research, 112, A12305, doi:10.1029/2007JA012455, 2007.
Lekshmi, D. V., Balan, N., Vaidyan, V. J., Alleyne, H., and Bailey, G. J., Response of the ionosphere to super geomagnetic storms: Observations and modeling, Advances in Space Research, 41, 548–555, 2008.
Lai, A. L., Determination of the Auroral Oval Region Based on FORMOSAT-3/COSMIC Tiny Ionospheric Photometer Data, M. S. thesis, National Cheng Kung University, Tainan, Taiwan, 2009.
Momani, M. A., Yatim, B., and Ali, M. A. M., Ionospheric and geomagnetic response to the total solar eclipse on 1 August 2008 over Northern Hemisphere, Journal of Geophysical Research, 115, A08321, 21, 2010.
Parks, G.K., Physics of Space Plasmas: An Introduction, Westview Press, Redwood City, 1995.
Ratcliffe, J.A., An introduction to the ionosphere and magnetosphere, Cambridge University Press, UK, 1972.
Ram, S. T., Su, S. Y., and Liu, C. H., FORMOSAT-3/COSMIC observations of seasonal and longitudinal variations of equatorial ionization anomaly and its interhemispheric asymmetry during the solar minimum period, Journal of Geophysical Research, 114, A06311, doi:10.1029/2008JA013880, 2009.
Wolf, R.A., Spiro, R.W., Sazykin, S., Toffoletto, F. R., How the Earth's inner magnetosphere works: An evolving picture, Journal of Atmospheric and Solar-Terrestrial Physics, 69, 288-302, 2007.
蔡龍治、蕭棟元、陳政儀、蔡偉雄、朱延祥、劉兆漢,福衛三號於全
電離層氣象觀測與研究, 物理雙月刊, 28(6), 896-909, 2006.
Reference Websites:
http://www.astrobio.net/
http://tacc.cwb.gov.tw
http://www.nspo.org.tw
http://spdf.gsfc.nasa.gov/
http://www.boqueteweather.com/links.htm