簡易檢索 / 詳目顯示

研究生: 羅立修
Mauricio Adrian, Montenegro Aguilar
論文名稱: 茂林國小室內空氣品質評估研究:室內與室外空氣品質之比較分析
Indoor Air Quality Assessment in Maolin Elementary School: A Comparative Study between Outdoor and Indoor Air Quality
指導教授: 哈里森約翰
Harrison, John Franklin
學位類別: 碩士
Master
系所名稱: 其他 - 全校永續跨域國際碩士學位學程
International Master's Program in Interdisciplinary Sustainability Studies
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 168
中文關鍵詞: 室內空氣品質低成本監測儀器皮爾森相關分析
外文關鍵詞: Indoor Air Quality , Low-Cost Device, Pearson Correlation
相關次數: 點閱:361下載:160
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了進一步了解偏鄉地區學童的學習與健康環境,本研究選擇臺灣南部茂林國小作為觀測場域,於冬季進行為期三個月的室內空氣品質調查。研究靈感來自近年報告指出,臺灣山區肺腺癌的病例有逐年上升趨勢,同時也有研究認為,室內空氣污染可能與兒童注意力不足過動症(ADHD)發展有所關聯,特別是在學齡前階段。
    資料蒐集方面,研究團隊採用 TEMTOP M2000 第二代低成本監測儀器,搭配臺灣環境部所提供的公開數據。透過皮爾森相關分析、時間序列圖與熱區視覺化等方式,分析各項污染物濃度的變化,並將結果與世界衛生組織(WHO)訂定的標準進行比對,以評估當地空氣品質是否符合健康門檻。
    整體而言,茂林國小的室內空氣品質大致落在 WHO 建議的安全範圍內。不過,分析結果也顯示,室內環境仍容易受到戶外空氣狀況、季節交替與地理因素的影響。研究指出,只要採取一些簡單措施,例如改善教室通風、定期進行環境清潔,便能有效提升室內空氣品質。此研究填補了臺灣偏鄉在 IAQ 領域的研究空白,也為未來相關政策與實務應用提供了初步參考

    As people spend an increasing proportion of their lives indoors, monitoring indoor air quality (IAQ) has become essential to public health. This study investigates IAQ during the winter season over a three-month period in Maolin, a rural village in southern Taiwan. The research focuses on Maolin Elementary School, motivated by recent studies showing a rise in lung adenocarcinoma in Taiwan's mountainous regions and evidence linking poor IAQ to developmental issues such as ADHD in preschool children.
    Data collection was carried out using a low-cost monitoring device (TEMTOP M2000 2nd generation) and publicly available datasets from Taiwan’s Ministry of Environment. The analysis employed Pearson correlation, time-series evaluation, and heatmap visualizations, with measured values compared against the World Health Organization (WHO) IAQ guidelines.
    Results indicate that IAQ levels in Maolin Elementary School remained within the WHO recommended limits. However, indoor air quality was significantly affected by outdoor air conditions, seasonal changes, and the school’s geographic location. The study concludes that a holistic approach is necessary when assessing IAQ, considering environmental, and behavioral factors. Simple interventions such as improving ventilation and routine cleaning can substantially enhance indoor environments. This research contributes to the limited body of IAQ literature in rural Taiwan and provides a foundation for future investigations and policy development.

    Abstract ii 摘要 iii Acknowledgments iv List of Tables viii List of Figures xiv CHAPTER 1 Introduction 17 1.1 Background 17 1.2 Research Motivation 18 1.3 Problem Statement 19 1.4 Research Objectives 19 1.5 Scope and Limitations 20 1.6 Hypothesis 21 CHAPTER 2 Literature Review 22 2.1 Carbon Dioxide 23 2.2 Particulate Matter 25 2.2.1 Particulate Matter 2.5 26 2.3 Formaldehyde HCHO 27 2.4 WHO Air Quality Guidelines 28 2.4.1 Air Quality Index 30 2.5 Seasonal Correlation 31 2.6 Low-Cost Sensing Technology 33 2.7 Spillover Effect 35 2.8 Sustainable Development Goals 36 2.9 Pearson Correlation 37 2.10 Welch’s t-test Analysis 38 CHAPTER 3 Research Methodology 39 3.1 Study Area 39 3.2 Indoor Air Quality Framework 42 3.3 Research Flow 43 3.3.1 Step 1: Select Air Quality Monitoring Device 43 3.3.2 Step 2: Select Study Area 43 3.3.3 Step 3: Request Permission from School 44 3.3.4 Step 4: Device Placement 44 3.3.5 Step 5: Regular Check Ups 45 3.3.6 Step 6: Indoor and Outdoor Data Collection 45 3.3.7 Step 7: Organizing Data 45 3.3.8 Step 8: Data Analysis 46 3.3.9 Step 9: Data Visualization 46 3.3.10 Step 10: Conclusion 47 3.4 Data Collection 48 3.5 Indoor Data Collection Device 54 3.6 Data Analysis 55 3.6.1 CO2 Emission Factor 55 3.6.2 Pearson Correlation 55 3.7 Welch's t-test 56 CHAPTER 4 Results and Discussion 57 4.1 Pearson Correlation 57 4.2 CO2 Emission Factor 58 4.3 Heatmap Analysis 60 4.3.1 December Heatmap 60 4.3.2 January Heatmap 62 4.3.3 February Heatmap 64 4.4 Time Series Analysis 66 4.4.1 December Time Series Analysis 66 4.4.2 January Time Series Analysis 68 4.4.3 February Time Series Analysis 70 4.5 Welch's t-test 72 CHAPTER 5 Conclusion 73 5.1 Major Findings 73 5.2 Contributions 74 5.3 Future Research 75 CHAPTER 6 References 78 CHAPTER 7 Appendix 83 Appendix A Indoor Air Quality Raw Data 84 Appendix B Ministry of Environment Raw Data 126 Appendix C Air Quality Index 165

    1. Chen, X., & Ye, J. (2018). When the wind blows: spatial spillover effects of urban air pollution in China, Journal of Environmental Planning and Management. https://doi.org/10.1080/09640568.2018.1496071
    2. Corlan, R. V., Balogh, R. M., Ionel, I., & Kilyenyi, S. (2021). The importance of indoor air quality (IAC) monitoring. Journal of Physics: Conference Series, 1781(1), 012062. https://doi.org/10.1088/1742-6596/1781/1/012062
    3. Deevi, R., & Lu, M. (2024). In-Vehicle Air Pollutant Exposures from Daily Commute in the San Francisco Bay Area, California. Atmosphere, 15(9), 1130. https://doi.org/10.3390/atmos15091130
    4. Dominici, F., Greenstone, M., & Sunstein, C. R. (2014). Science and regulation: Particulate matter matters. Science, 344(6181), 257–259. https://doi.org/10.1126/science.1247348
    5. Fan, H.-C., Chen, C.-M., Tsai, J.-D., Chiang, K.-L., Tsai, S. C.-S., Huang, C.-Y., Lin, C.-L., Hsu, C. Y., & Chang, K.-H. (2022). Association between exposure to particulate matter air pollution during early childhood and risk of attention-deficit/hyperactivity disorder in Taiwan. International Journal of Environmental Research and Public Health, 19(23), 16138. https://doi.org/10.3390/ijerph192316138
    6. Heo, S. W., Ito, K., & Kotamarthi, R. (2025). International spillover effects of air pollution: Evidence from mortality and health data. Review of Economics and Statistics, 1-45. https://doi.org/10.1162/rest_a_01581
    7. Hossen, M. A., Ruva, I. J., Masum, M. M. H., & Barua, P. (2022). Status of air quality and noise level with associated health risk vicinity to shipbreaking yards of Bangladesh. Environment & Ecosystem Science, 6(2), 83–93. https://doi.org/10.26480/ees.02.2022.83.93
    8. Iqbal, M. M., & Shafiq, M. (2023). Indoor air quality monitoring in metropolitan city Lahore, using handheld devices. Journal of Air Pollution and Health, 8(4), Article 14539. https://publish.kne-publishing.com/index.php/JAPH/article/view/14539
    9. Jacobson, T. A., Kler, J. S., Hernke, M. T., Braun, R. K., Meyer, K. C., & Funk, W. E. (2019). Direct human health risks of increased atmospheric carbon dioxide. Nature Sustainability, 2(8), 691–701. https://doi.org/10.1038/s41893-019-0323-1
    10. Karagulian, F., Barbiere, M., Kotsev, A., Spinelle, L., Gerboles, M., Lagler, F., Redon, N., Crunaire, S., & Borowiak, A. (2019). Review of the performance of low-cost sensors for air quality monitoring. Atmosphere, 10(9), 506. https://doi.org/10.3390/atmos10090506
    11. Kassomenos, P. A., Vardoulakis, S., Chaloulakou, A., Paschalidou, A. K., Grivas, G., Borge, R., & Lumbreras, J. (2014). Study of PM₁₀ and PM₂.₅ levels in three European cities: Analysis of intra and inter urban variations. Science of The Total Environment, 488–489, 461–477. https://www.sciencedirect.com/science/article/abs/pii/S1352231014000132
    12. Lai, I.-C., Lee, C.-L., & Huang, H.-C. (2016). A new conceptual model for quantifying transboundary contribution of atmospheric pollutants in the East Asian Pacific rim region. Atmospheric Environment, 103, 383–392. https://www.sciencedirect.com/science/article/abs/pii/S0160412015301239
    13. Li, TC., Yuan, CS., Huang, HC. et al. Inter-comparison of Seasonal Variation, Chemical Characteristics, and Source Identification of Atmospheric Fine Particles on Both Sides of the Taiwan Strait. Sci Rep 6, 22956 (2016). https://doi.org/10.1038/srep22956
    14. Lin, C.-Y., Wang, Z., Chen, W.-N., Chang, S.-Y., Chou, C. C. K., Sugimoto, N., & Zhao, X. (2007). Long-range transport of Asian dust and air pollutants to Taiwan: Observed evidence and model simulation. Atmospheric Chemistry and Physics, 7(2), 423–434. https://doi.org/10.5194/acp-7-423-2007
    15. Liu, H.-I., Chiang, C.-J., Su, S.-Y., Yang, Y.-W., Lee, W.-C., & Lai, M.-S. (2023). Incidence trends and spatial distributions of lung adenocarcinoma and squamous cell carcinoma in Taiwan. Scientific Reports, 13, 1655. https://doi.org/10.1038/s41598-023-28253-4
    16. Miller, L., & Xu, X. (2018). Ambient PM2.5 human health effects—Findings in China and research directions. Atmosphere, 9(11), 424. https://doi.org/10.3390/atmos9110424
    17. Mukherjee, A., & Agrawal, M. (2017). World air particulate matter: Sources, distribution and health effects. Environmental Chemistry Letters, 15(2), 283–309. https://doi.org/10.1007/s10311-017-0611-9
    18. Mukhopadhyay, K., Ramasamy, R., Mukhopadhyay, B., Ghosh, S., Sambandam, S., & Balakrishnan, K. (2014). Use of Ventilation-Index in the Development of Exposure Model for Indoor Air Pollution—A Review. Open Journal of Air Pollution, 3, 33-41. http://dx.doi.org/10.4236/ojap.2014.32004
    19. National Cancer Institute. (n.d.). Formaldehyde and cancer risk. U.S. Department of Health and Human Services, National Institutes of Health. https://www.cancer.gov/about-cancer/causes-prevention/risk/substances/formaldehyde
    20. National Toxicology Program. (2021). Formaldehyde, Report on Carcinogens, Fifteenth Edition. Triangle Park, NC: National Institute of Environmental Health and Safety. Retrieved from https://www.cancer.gov/about-cancer/causes-prevention/risk/substances/formaldehyde
    21. Ni, X. Y., Huang, H., & Du, W. P. (2017). Relevance analysis and short-term prediction of PM₂.₅ concentrations in Beijing based on multi-source data. Atmospheric Environment, 134, 95–102. https://www.sciencedirect.com/science/article/abs/pii/S1352231016309451
    22. Nurcahyanto, H., Prihatno, A. T., Alam, M. M., Rahman, M. H., Jahan, I., Shahjalal, M., & Jang, Y. M. (2022). Multilevel RNN-based PM10 air quality prediction for industrial Internet of Things applications in cleanroom environment. Wireless Communications and Mobile Computing, 2022, Article 1874237. https://doi.org/10.1155/2022/1874237
    23. Pant, G., Alka, Garlapati, D., Gaur, A., Hossain, K., Singh, S. V., & Gupta, A. K. (2020). Air quality assessment among populous sites of major metropolitan cities in India during COVID-19 pandemic confinement. Environmental Science and Pollution Research, 27, 44629–44636. https://doi.org/10.1007/s11356-020-11061-y
    24. Pitarma, R., Marques, G., & Ferreira, B. R. (2017). Monitoring indoor air quality for enhanced occupational health. Journal of Medical Systems, 41(2), 23. https://doi.org/10.1007/s10916-016-0667-2
    25. Rickenbacker, H. J., Collinge, W. O., Hasik, V., Ciranni, A., Smith, I., Colao, P., Sharrard, A. L., & Bilec, M. M. (2019). Development of a framework for indoor air quality assessments in energy conservation districts. University of Pittsburgh. https://www.sciencedirect.com/science/article/pii/S2210670719313277
    26. Rodríguez Rama, J. A., Presa Madrigal, L., Costafreda Mustelier, J. L., García Laso, A., Maroto Lorenzo, J., & Martín Sánchez, D. A. (2024). Monitoring and Ensuring Worker Health in Controlled Environments Using Economical Particle Sensors. Sensors, 24(16), 5267. https://doi.org/10.3390/s24165267
    27. Russell, A. G., & Brunekreef, B. (2009). A focus on particulate matter and health. Environmental Science & Technology, 43(13), 4620–4625. https://doi.org/10.1021/es9005459
    28. Schibuola, L., & Tambani, C. (2020). Indoor environmental quality classification of school environments by monitoring PM and CO₂ concentration levels. Atmospheric Pollution Research, 11(2), 332–342. https://www.sciencedirect.com/science/article/abs/pii/S1309104219304945
    29. Stelęgowski, A. (2019). Correlations between air pollutant concentrations in selected urban and rural areas in Poland. Acta Innovations, (31), 14-22. https://www.ceeol.com/search/article-detail?id=972877
    30. Sá, J. P., Alvim-Ferraz, M. C. M., Martins, F. G., & Sousa, S. I. V. (2022). Application of the low-cost sensing technology for indoor air quality monitoring: A review. Environmental Technology & Innovation, 28, 102551. https://doi.org/10.1016/j.eti.2022.102551
    31. U.S. Environmental Protection Agency. (n.d.). AQI basics. AirNow. https://www.airnow.gov/aqi/aqi-basics/
    32. United Nations. (2000). United Nations Millennium Declaration (A/RES/55/2). https://www.un.org/millenniumgoals/
    33. United Nations. (2015). Transforming our world: The 2030 Agenda for Sustainable Development. https://sdgs.un.org/2030agenda
    34. World Health Organization. (2021). WHO global air quality guidelines: Particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide – Executive summary. Geneva: World Health Organization. https://apps.who.int/iris/handle/10665/345329
    35. Wu, I. P., Liao, S. L., Lai, S. H., & Wong, K. S. (2022). The respiratory impacts of air pollution in children: Global and domestic (Taiwan) situation. Biomedical journal, 45(1), 88-94. https://doi.org/10.1016/j.bj.2021.12.004
    36. Yang, N., Ji, D., & Li, S. (2015). The application of Pearson correlational analysis method in air quality analysis of Beijing-Tianjin-Hebei region. Agricultural Science & Technology, 16(3), 590–592. Retrieved from https://www.proquest.com/openview/59af77bc1c92b71bd4145179152c6848/
    37. Yoon, C., Lee, K., & Park, D. (2011). Indoor air quality differences between urban and rural preschools in Korea. Environmental Science and Pollution Research, 18(3), 333–345. https://doi.org/10.1007/s11356-010-0377-0
    38. Zapata-Lancaster, M. G., Ionas, M., Toyinbo, O., & Smith, T.A. (2023). Carbon Dioxide Concentration Levels and Thermal Comfort in Primary School Classrooms: What Pupils and Teachers Do. Sustainability, 15, 4803. https://doi.org/10.3390/su15064803
    39. Zhang, L., Steinmaus, C., Eastmond, D. A., Xin, X. K., & Smith, M. T. (2009). Formaldehyde exposure and leukemia: A new meta-analysis and potential mechanisms. Mutation Research/Reviews in Mutation Research, 681(2–3), 150–168. https://www.sciencedirect.com/science/article/abs/pii/S1383574208001002
    40. Zhang, T., Chen, Y., & Xu, X. (2020). Health risk assessment of PM2.5-bound components in Beijing, China during 2013–2015. Aerosol and Air Quality Research, 20(9), 1938–1949. https://doi.org/10.4209/aaqr.2020.03.0108
    41. Zhang, Z., Hoek, G., Chang, L.-Y., Chan, T.-C., Guo, C., Chuang, Y.-C., Chan, J., Lin, C., Jiang, W.K., Guo, Y., Vermeulen, R., Yeoh, E.-K., Tam, T., Lau, A.K.H., Griffiths, S., & Lao, X.Q. (2018). Particulate matter air pollution, physical activity and systemic inflammation in Taiwanese adults. International Journal of Hygiene and Environmental Health, 221(1), 41–47. https://doi.org/10.1016/j.ijheh.2017.10.001
    42. Zhao, N., Liu, Y., Vanos, J. K., & Cao, G. (2018). Day-of-week and seasonal patterns of PM2.5 concentrations over the United States: Time-series analyses using the Prophet procedure. Atmospheric Environment, 192, 116–127. https://doi.org/10.1016/j.atmosenv.2018.08.050

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE