簡易檢索 / 詳目顯示

研究生: 沈雅琦
Shen, Ya-Chi
論文名稱: 電化學蝕刻製備多孔磷化鎵特性
Morphological Characterization of Porous GaP Prepared by Electrochemical Etching
指導教授: 洪敏雄
Hon, Min-Hsiung
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 124
中文關鍵詞: GaP電化學蝕刻陽極化孔洞半導體乙醇
外文關鍵詞: GaP, electrochemical etching, anodization, porous semiconductor, ethanol
相關次數: 點閱:93下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 經電化學蝕刻製作的III-V族化合物半導體,尤其是GaP半導體,由於價格便宜,廣泛應用於紅色、橙色與綠色發光二極體。當孔洞尺寸在適當的反應條件下縮小至奈米等級,半導體的光電性質會因其量子侷限效應而改變。然而GaP由於成核反應困難,並不容易形成規則孔洞型態。因此,在本研究中,改變電解液的組成,使用強含氧酸:硫酸溶液和硝酸溶液,對GaP進行電化學蝕刻,探討其孔洞形態及孔層結構對發光性質之影響。
    實驗結果顯示,以1M硫酸水溶液作為電解液,於30V以下,沿晶格方向蝕刻,得到放射狀樹枝孔;而超過30V,電流方向佔優勢,則沿垂直晶圓表面方向蝕刻,得到直孔。由於表面形成微孔,光激發光的效率比塊材GaP明顯提升。另外,以1M硫酸乙醇溶液作為電解液,結果顯示,於35V時所得之多孔GaP,因孔徑較小,表面氧化層下之內部孔洞密度高,孔徑分布均勻,排列規則,發光效率最佳。
    在陽極化過程中表面所沉積之厚氧化層會阻礙其發光效率。但若將陽極氧化所得多孔GaP再浸泡於硝酸或硝酸鹽類溶液中,進一步化學蝕刻,則可由電子顯微鏡明顯觀察到其表面形成規則大小一致的孔洞型態。顯示此化學蝕刻再處理步驟不僅溶解了表面的成核氧化層,甚至改變了孔洞的形態,影響GaP的光學性質。
    以3M硝酸水溶液作為電解液,在18V~23V下對GaP進行電化學蝕刻,可得到孔隙度高的立體網狀孔洞結構,由於所形成孔洞面積較大,發光效率較硫酸水溶液電解液所得之GaP更高。
    藉由多孔GaP成孔機制的探討,尋找電化學蝕刻所產生之多孔層狀結構,由樹枝狀孔(晶格取向)轉變為直孔(電流取向)時的臨界電壓。當使用99.8%乙醇為溶劑,在3M硝酸溶液的陽極氧化條件下,在24.5 V的臨界電壓,可形成直孔與樹枝狀孔交錯的超晶格結構。在25V~26V時可形成規則有序的奈米級直孔結構。
    由電化學蝕刻製備的多孔GaP會產生明顯且規則的孔洞型態,導致其光激螢光之強度比塊材GaP提高數倍,其中尤以在硫酸乙醇溶液中陽極氧化所造成的提升效果最佳,可達10倍,這些孔洞形態的研究可提供未來製作光電元件時多樣的選擇。

    Various pore morphologies and optical properties have been observed in electrochemically etched III-V compound semiconductors in the literatures. Especially GaP, due to it is inexpensive, widely used in red, orange and green light-emitting diodes. Upon reducing the pore dimensionality into nanometer scale under proper conditions, the optoelectronic properties of semiconductors are changed due to their quantum confinement effects taking place at this point. This phenomenon depends closely on the semiconductors pore formation mechanism. However, it is more difficult to form ordering pore morphology for porous GaP among other III-V compound semiconductors in electrochemical etching process due to its difficulty in pore nucleation.
    In this study, porous GaP was obtained through electrochemical etching process under constant potential in two different strong oxyacids of sulfuric acid (H2SO4) based solution or nitric acid (HNO3) based solution, respectively. They were investigated for the pore morphology, porous layer structure of porous GaP largely and the effects on luminescence properties.
    Experimental results show that anodization of GaP in 1M H2SO4 aqueous solution, under bias voltage of 30V or less, along the lattice direction of the etching, the tree-liked pore has been gained. However, bias voltage larger than 30V, the dominant current direction along the vertical surface determines the wafer direction of etching and get straight pores. As the porous surface, the PL efficiency than the bulk GaP is improved significantly.
    With 1M H2SO4 99.8% ethanol as the electrolyte in anodization, the results show that, the porous morphology is formed at 35V, due to the smaller diameter and ordering pore size distribution. The inner porous layer structure under the surface oxide layer shows the optimal luminous efficiency.
    The photoluminescence efficiency of porous GaP, produced from anodization of GaP in H2SO4 based electrolyte, is reduced owing to a thick oxide layer deposited on the surface of the materials. However, an uniform pore morphology on the surface of the porous GaP is observed by Scanning Electron Microscopy (SEM) when the wafer is anodized first and then emerged into nitric acid solution or nitrate solution for chemical etching. It appears not only dissolution of the upper nucleation oxide layer but also change of the pore morphology and optical properties of the materials occurring in this step.
    In comparing with the experiment performed in H2SO4 based electrolyte , a high porosity three dimensional network is produced from anodization of GaP in 3M HNO3 aqueous electrolyte under 18V ~ 23V. The porous GaP reveals a larger PL intensity due to the more porous surface area ratio than bulk GaP. The result may be applied to the fabrication of the photonic crystal materials.
    Pore formation mechanism of electrochemically etched porous GaP is under investigation for the critical potential occurring at porous layer structure transformation from tree-liked pore (crystalline dependent) to straight pore (electric current dependent). Anodization of GaP in 3M HNO3 , 99.8% ethanol solution leads to a superlattice containing both straight pore and tree-liked pore structures supported by cross-sectional SEM images at the critical potential of 24.5 V. Ordered nano-meter scale and straight pores could been fabricated at 25.0 V.
    Owing to the obviously ordering pore morphology of porous GaP prepared by electrochemical etching, the photons toward the detector should be increased because they are more randomly scattered over the surface in porous GaP. Therefore porous n-GaP prepared by anodic etching can reveal a larger PL intensity than that of bulk, and the one anodized in H2SO4 ethanol solution has the most significant enhancement. The study of pore morphologies could provide various selections of ways for manufacturing optoelectronic devices in the future.

    總目錄 中文摘要 I 英文摘要 III 總目錄 VI 表目錄 IX 圖目錄 X 英漢名詞與符號對照表 XVI 第一章 緒論 1 1-1 前言 1 1-2 研究背景與文獻探討 2 1-3 研究動機與目的 9 第二章 理論基礎 11 2-1 電化學蝕刻 11 2-2 電化學蝕刻孔成長機制 13 2-3 電解液之選擇 17 2-4 電激發光原理 22 2-5 GaP陽極化的電激發光現象 22 第三章 實驗方法與步驟 27 3-1 實驗流程 27 3-2 電化學蝕刻設備 28 3-3 實驗原料 28 3-4 實驗步驟 30 3-5 分析與鑑定 31 第四章 結果與討論 33 4-1 在硫酸系統電解液陽極化所得之多孔GaP的特性 33 4-1-1 多孔GaP之孔洞生成機制 33 4-1-2 添加乙醇對GaP陽極化之影響 42 4-1-3 以硝酸或硝酸鹽類後處理 47 4-1-4 陽極化溫度對多孔GaP孔洞型態之影響 50 4-1-5 以陽極氧化鋁為模板進行陽極化 50 4-1-6 多孔GaP之電激發光 54 4-1-7 多孔GaP ESCA 分析 56 4-1-8 多孔GaP低掠角 XRD分析 58 4-1-9 多孔GaP PL光譜分析 61 4-1-10 多孔GaP拉曼光譜分析 66 4-1-11 小結 71 4-2 在硝酸系統電解液陽極化之多孔GaP的特性 72 4-2-1 多孔GaP之孔洞生成機制 72 4-2-2 添加硝酸鹽類對GaP陽極化之影響 75 4-2-3 添加乙醇對GaP陽極化之影響 80 4-2-4 多孔GaP之電激發光 85 4-2-5 多孔GaP ESCA 分析 89 4-2-6 多孔GaP 低掠角XRD分析 92 4-2-7 多孔GaP PL 光譜分析 95 4-2-8 小結 99 4-3 硫酸系統與硝酸系統電解液陽極化之多孔GaP的比較 101 4-3-1 多孔GaP孔洞生成機制之不同 101 4-3-2 多孔GaP之電激發光性質比較 102 4-3-3 陽極化之多孔GaP 成分分析之比較 102 4-3-4 陽極化之多孔GaP 光激發光性質之比較 105 4-3-5 小結 109 第五章 總結論 110 參考文獻 112 誌謝 123 個人簡歷 124 表目錄 Table 1-1 Some basic properties of pores in III-V semiconductors. Table 2-1 Ionization constant of neutral and cation acid. Table 4-1 The effect of applied voltage on the surface pore diameter gained from SEM top view image for porous GaP anodized in H2SO4 aqueous solution. Table 4-2 The comparison of photoluminescence intensity between bulk GaP and porous GaP anodized in H2SO4 system electrolyte. Table 4-3 Scanning electron microscopy energy dispersive X-ray analysis results (element atom percentage) at the different regions on the porous GaP anodized in HNO3 ethanoic electrolyte at 24.5V. Table 4-4 The comparison of photoluminescence intensity of bulk GaP and porous GaP anodized in HNO3 system electrolyte. Table 4-5 Comparison of photoluminescence intensity of porous GaP anodized in different electrolyte system. Table 4-6 Comparison of photoluminescence intensity of porous n-GaP possing close pore diameter. 圖目錄 Fig. 1-1 Idealized plan view of porous Si. Fig. 1-2 Photoluminescence from porous Si. Fig. 1-3 The cross section SEM image of porous GaP anodized in H2SO4(aq). Fig. 1-4 The cross section SEM image of porous GaP anodized in H2SO4(aq). Fig. 2-1 Schematic representation of the production of O2- or OH- ions at the surface of a barrier layer during growth. Fig. 2-2 Schematic illustration of non-uniform film growth and current distribution during porous anodic film formation. Fig. 2-3 Dependence of current on time for anodization of Al foil in 0.3M oxalic acid solution under a constant voltage of 40 V at 13ºC. Fig. 2-4 Schematic illustration of various stages of porous etching. Fig. 2-5 Bandgap diagram of (a)direct, (b)indirect semiconductor. Fig. 2-6 Energy-band diagram on the semiconductor /electrolyte interface. Fig. 2-7 Model for inter-band tunneling (step 1) and impact ionization (step 2 and 3) at different potential drops over the semiconductor, increasing from figure a to b. Fig. 3-1 Flow chart of the experiment. Fig. 3-2 Anodizing equipment. Fig. 3-3 Zinc blende. Fig. 4-1 The penetration rate for GaP anodized in H2SO4 aqueous solution. Fig. 4-2 The top view SEM images for porous GaP anodized in 1M H2SO4 aqueous solution under different potentials. Fig. 4-3 (a) The top view SEM images for porous GaP anodized in 1M H2SO4 aqueous solution under applied voltage of 35V. (b) EDS analysis for spot A. (c) EDS analysis for spot B. Fig. 4-4 The cross section SEM images for porous GaP anodized in 1M H2SO4 aqueous solution under different potentials. Fig. 4-5 J-t curve during GaP anodized in 1M H2SO4 aqueous solution under applied voltage of 40V. Fig.4-6 The top view SEM images for porous GaP anodized in 1M H2SO4 ethanoic solution under applied voltage of (a)40V and (b) 50V, (c) and (d) are the cross section SEM images of (a) and (b), respectively. Fig. 4-7 Inner layer of porous GaP anodized in 1M H2SO4 ethanoic solution under different applied voltage. Fig. 4-8 I-t curve during GaP anodized in 1M H2SO4 ethanoic solution under applied voltage of 40V. Fig. 4-9 (a) The top view SEM image for porous GaP anodized in 1M H2SO4 ethanoic solution under applied voltage of 40V. (b) Chemical etching of sample by 0.1M AgNO3(aq). (c) Chemical etching of sample by 3M HNO3(aq). (d) Detailed structures of (c). Fig. 4-10 The top view SEM images of porous GaP anodized in 1M H2SO4 ethanoic solution under applied voltage of 40V at (a) 30℃ and (b) 40℃. Fig. 4-11 Chemical etching by 3M HNO3(aq) for GaP anodized in 1M H2SO4 ethanoic solution under applied voltage of 40V at 30℃. Fig. 4-12 The top view SEM image for (a) AAO (b) porous GaP using AAO as mask anodized in 1M H2SO4 ethanoic solution under applied voltage of 40V. Fig. 4-13 Luminescence spectra of GaP during anodization at (a) 44V, and (b) 40V in H2SO4 aqueous solution. Fig. 4-14 ESCA spectra(Ga 2p) of bulk GaP and porous GaP anodized in H2SO4 based solution. Fig. 4-15 ESCA spectra (P 2p) of bulk GaP and porous GaP anodized in H2SO4 based solution. Fig. 4-16 X-ray patterns of porous GaP anodized in (a) H2SO4 aqueous solution, and (b) H2SO4 ethanoic solution. Fig. 4-17 The photoluminescence spectra of bulk GaP and porous GaP layer anodized in H2SO4 aqueous solution. Fig. 4-18 The photoluminescence spectra of bulk GaP and porous GaP layer anodized in H2SO4 ethanoic solution. Fig. 4-19 The photoluminescence spectra of porous GaP layer (a) bulk GaP. (b) porous GaP anodized in H2SO4 ethanoic solution at 40 V. (c) porous GaP chemical etched by AgNO3(aq) after anodization, and (d) with AAO as template during anodization. Fig. 4-20 Comparison of the Raman spectra for bulk GaP and porous GaP. Fig. 4-21 Raman spectra fitting of porous GaP prepared by anodization. Fig. 4-22 The top view SEM images for porous GaP anodized in 3M HNO3 aqueous solution under applied voltage of (a) 20V, (b) 23V, (c) 28V, and 4M HNO3 aqueous solution under applied voltage of (d) 20V. Fig. 4-23 The cross section SEM images for porous GaP anodized in 3M HNO3 aqueous solution under applied voltage of (a) 20V, (b) 23V, and (c) 28V. Fig. 4-24 J-t curve during GaP anodization in 3M HNO3 aqueous solution under applied voltage of 23V. Fig. 4-25 (a)The top view and (b) the cross section SEM image of porous GaP anodized in (3M HNO3(aq) + 10ml 0.1M AgNO3(aq)) electrolyte. Fig. 4-26 J-t curve during GaP anodized in 3M HNO3/AgNO3 aqueous solution. Fig. 4-27 SEM images of the top surface for GaP anodized in 3M HNO3 ethanoic electrolyte system at a constant voltage of (a) 20 V, (b) 23V, (c) 24.5 V, (d) 25V, (e) 26V, and (f) 28V. Fig. 4-28 SEM images taken in cross section of porous GaP layer obtained by anodization in a 3M HNO3 ethanoic electrolyte system under different potentials. Fig. 4-29 The detailed structures SEM micrographs of porous GaP, the (a)C and (c)E layers showing the nanostructure pore diameter of approximately 50 nm, and the (b)D layer the orientation of pores along the crystallographic directions by the anisotropic etching at a low current density. Fig. 4-30 J-t curve during GaP anodized in 3M HNO3 ethanoic electrolyte system at a constant voltage of (a) 24.5 V, and (b) 25V. Fig. 4-31 Luminescence spectra of GaP during anodization at (1)40V, and (2)30V in HNO3 aqueous solution. Fig. 4-32 ESCA spectra (Ga 2p) of (a ) bulk GaP, and ( b ) porous GaP anodized in HNO3 aqueous solution. Fig. 4-33 ESCA spectra (P2p) of (a)bulk GaP and ( b )porous GaP anodized in HNO3 aqueous solution. Fig. 4-34 X-ray patterns of porous GaP anodized in HNO3 (a) aqueoud (b) ethanoic electrolyte system under potentials of 23V. Fig. 4-35 X-ray patterns of porous GaP anodized in HNO3 ethanoic electrolyte system under different potentials of (a) 23V, and (b) 25V. Fig. 4-36 The photoluminescence spectra of porous GaP layer anodized in HNO3 aqueous solution. Fig. 4-37 The photoluminescence spectra of porous GaP layer anodized in HNO3 ethanoic solution under different potentials. Fig. 4-38 Luminescence spectra of GaP during anodization at 40V in (a) H2SO4 aqueous solution, and (b) HNO3 aqueous solution. Fig. 4-38 X-ray patterns of porous GaP anodized in (a) H2SO4 aqueous solution, and (b) HNO3 ethanoic solution. Fig. 4-40 ESCA spectra (P 2p) of ( a ) bulk GaP, ( b ) porous GaP anodized in HNO3 aqueous solution at 23V, and ( c ) H2SO aqueous solution at 35V.

    參考文獻
    [1] L. T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers”, Appl. Phys. Lett., 57 (1990) 1046.
    [2] B. D. Chase, and D. B. Holt, “Jet polishing of semiconductors electrochemically formed tunnels in GaP”, J. Electrochem. Soc., 119 (1972) 314.
    [3] M. M. Faktor, D. G. Fiddyment, and M. R. Taylor, “Electrochemically etched tunnels in Gallium Arsenide”, J. Electrochem. Soc., 122 (1975) 1566.
    [4] P. Schmuki, D. J. Lockwood, H. J. Labbe, and J. W. Frase, “Visible photoluminescence from porous GaAs”, Appl. Phys. Lett., 69 (1996) 1620.
    [5] H. Foll, S. Langa, J. Carstensen, S. L¨oakes, M. Christophersen, and I. M. Tiginyanu, “Engineering porous III-Vs”, III-Vs Review, 16(2003) 42.
    [6] M. T. Kelly, J. K. M. Chun, and A. B. Bocarsly, “A silicon sensor for SO2”, Nature, 382 (1996) 214.
    [7] R. C. Weast, “Handbook of chemistry and Physics.” , CRC press, Boca Raton, (1989).
    [8] D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV ”, Phys. Rev. B, 27 (1983) 985.
    [9] L. T. Canham, T. I. Cox, A. Loni, and A. J. Simons, “Progress towards silicon optoelectronics using porous silicon technology”, Appl. Surf. Sci., 102 (1996) 436.
    [10] H. Foll, J. Carstensen, and S. Frey, “Porous and nanoporous semiconductors and emerging applications”, J. Nanomater., (2006) 91635.
    [11] V. R. Kochergin and H. Foll, “Novel optical elements made from porous Si” , Mater. Sci. Eng.R., 52 (2006) 93.
    [12] O. Bisi, S. Ossicini, and L. Pavesi, “ Porous silicon: A quantum sponge structure for silicon based optoelectronics”, Surf. Sci. Rep., 38 (2000) 1.
    [13] K. D. Hirschman, L. Tsybeskov, S. P. Duttagupta, and P. M. Fauchet, “Silicon-based visible light-emitting devices integrated into microelectronic circuits”, Nature, 384 (1996) 338.
    [14] G. Marsh, “Porous silicon A useful imperfection”, Mater. Today, 5 (2002) 36.
    [15] V. Parkhutik, “Porous silicon-mechanisms of growth and applications”, Solid State Electron., 43 (1999) 1121.
    [16] J. J. Mares, J. Kristofik, and E. Hulicius, “Influence of humidity on transport in porous silicon”, Thin Solid Films, 255 (1995) 272.
    [17] A. G. Cullis, L. T. Canham, and P. D. G. Calcott, “The structural and luminescence properties of porous silicon”, J. Appl. Phys., 82 (1997) 909.
    [18] R. C. Anderson, R. S. Muller, and C. W. Tobias, “Investigation of porous silicon for vapour sensing”, Sensor. Actuator. 21 (1990) 835.
    [19] J. M. Lauerhaas and M. J. Sailor, “Chemical modification of the photoluminescence quenching of porous silicon”, Science, 261 (1993) 1567.
    [20] S. Langa, I. M. Tiginyanu, J. Carstensen, M. Christopherson, and H. Foll, “Formation of porous layers with different morphologies during anodic etching of n-InP”, Electrochemical and Solid-State Lett., 3 (11) (2000) 514.
    [21] T. Takizawa, S. Arai and M. Nakahara, “Fabricatuon of vertical and uniform-size porous InP Structure by electrochemical anodization”, Jpn. J. Appl. Phys., 33 (1994) L643.
    [22] P. Schmuki, J. W. Fraser, C. M. Vitus, M. J. Graham, and H. S. Issacs, “Initiation and formation of porous GaAs”, J. Electrochem. Soc., 143 (1996) 3316.
    [23] A. Anedda, A. Serp, V. A. Karavanskii, I. M. Tiginyanu, and V. M. Ichizli, “Time resolved blue and ultraviolet photoluminescence in porous GaP”, Appl. Phys. Lett., 67 (1995) 3316.
    [24] P. Kliemann, X. Badel, and J. Linnros, “Toward the formation of three-dimensional nanostructures by electrochemical etching of Si”, Appl. Phys. Lett., 86 (2005) 183108.
    [25] H. Ohji, P. J. French, S. Izuo, and K. Tsutsumi, “Initial pits for electrochemical etching in hydrofluoric acid”, Sensors and Actuators A, 85 (2000) 390.
    [26] S. Chan, Y. Li, L. J. Rothberg, B. L. Miller, and P. M. Fauchet, “Nanoscale silicon microcavities for biosensing”, Materials Science and Engineering C, 15 (2001) 277.
    [27] M. Christophersen, J. Carstensen, S. Ronnebeck, C. Jager, W. Jager, and H. Foll, “Crystal orientation dependence and anisotropic properties of macropore formation of p- and n-type Silicon”, Journal of the Electrochemical Society, 148 (2001) E267.
    [28] A. I. Vorobyova, V. A. Sokol, and E. A. Outkina, “SEM investigation of pillared microstructures formed by electrochemical anodization”, Appl. Phys. A, 67 (1998) 487.
    [29] G. Di Francia, V. La Ferrara, L. Quercia, and G. Faglia, “Sensitivity of porous silicon photoluminescence to low concentrations of CH4 and CO”, J. Porous Mater., 7 (2000) 287.
    [30] R. W. Tjerkstra, J. Gomez Rivas, D. Vanmaekelbergh, and J. J. Kelly, “Porous GaP multilayers formed by electrochemical etching”, Electrochemical and Solid-State Letters, 5 (2002) G32.
    [31] G. Korotcenkov and B. K. Cho, “Porous semiconductors: advanced material for gas sensor applications” Critical Reviews in Solid State and Materials Sciences, 35 (2010) 1.
    [32] B. H. Erne, D. Vanmaekelbergh, and J. J. Kelly, “Porous Etching: A means to enhance the photoresponse of indirect semiconductors”, Adv. Mater.7 (1995) 739.
    [33] A. Sarua, I. M. Tiginyanu, V. V. Ursaki, G.. Irmer, J. Monecke, and H. L. Hartnagel, ”Charge carrier distribution in free-standing porous GaP membranes studied by Raman spectroscopy“, Solid state communication., 112 (1999) 581.
    [34] Takayuki Yokoyama, H. Asoh, and S. Ono “Site-selective anodic etching of InP substrate using self-organized spheres as mask”, Phys. Status Solidi, 4 (2010) 943.
    [35] T. Sato, A. Mizohata, T. Fujino, and T. Hashizume, “Electrochemical formation of InP porous nanostructures and its application to amperometric chemical sensors”, Phys. stat. sol. 5 (2008) 3475.
    [36] A. Liu and C. Duan, “Temperature dependent photoluminescence of porous InP”, Solid-State Electronics, 45 (2001) 2089.
    [37] S. Langa, J. Carstensen, I. M. Tiginyanu, M. Christopherson, and H. Foll, “Self-induced voltage oscillations during anodic etching of n-InP and possible applications for three-dimensional microstructures”, Electrochemical and Solid-State Letters., 4 (2001) G50.
    [38] H. Tsuchiya, M. Hueppe, T. Djenizian, and P. Schmuki, “Electrochemical formation of porous superlattices on n-type (100) InP”, Surface Science, 547 (2003) 268.
    [39] J. Sabataityte, I. Simkiene, R. A. Bendorius, K. Grigoras, V. Jasutis, V. Pacebutas, H. Tvardauskas, and K.Naudzius, “Morphology and strongly enhanced photoluminescence of porous GaAs layers made by anodic etching”, Mater.Sci. Eng C., 19 (2002) 155.
    [40] L. Beji, L. Sfaxi, B. Ismail, S. Zghal, F. Hassen, and H. Maaref, “Morphology and photoluminescence studies of electrochemically etched heavily doped p-type GaAs in HF solution”, Microelectronics Journal, 34 (2003) 969.
    [41] C. L. Chiang, S. Wagner, and C. L. Shieh, “A new photo- electrochemical profiling technique for recombination centers in GaAs”, Appl. Phys. Lett., 45 (1984) 884.
    [42] E Monaico, V. V. Ursaki, A. Urbieta, P. Fern´andez, J. Piqueras, R. W. Boyd, and I. M. Tiginyanu1, “Porosity-induced gain of luminescencein CdSe”, Semicond. Sci. Technol, 19 (2004) L121.
    [43] H. Cachet, H. Essaaidi, M. Froment and A. Messad, “Chemical bath deposition of CdSe layers from Cd(II)-selenosulfite solutions”, J. Electroanal. Chem., 396 (1995) 175.
    [44] E. J. Connolly, G. M. O’Halloran, H. T. M. Pham, P. M. Sarro, and P. J. French, “Comparison of porous silicon, porous polysilicon and porous silicon carbide as materials for humidity sensing applications”, Sensor. Actuator. B, 99 (2002) 25.
    [45] W. H. Chang, B. Schellin, E. Obermeier, and Y. C. Huang, “Electrochemical etching of n-type 6H-SiC without UV illumination”, J. Microelectromechanical Systems., 3 (2006) 548.
    [46] E. J. Connolly, B. Timmer, H. T. M. Pham, J. Groeneweg, P. M. Sarro, W. Olthuis, and P. J. French,” A porous SiC ammonia sensor”, Sensor. Actuator. B, 109 (2005) 44.
    [47] J. W. Seo, C. S. Oh, J. W. Yang, G. M. Yang, K. Y. Lim, C. J. Yoon, and H. J. Lee, “Allowable substrate bias for the etching of n-GaN in photo-enhanced electrochemical etching”, Phys. Stat. Sol. 188 (2001) 403.
    [48] S. Nanako, S.Taketomo and H.Tamotsu, “Formation of thin native oxide layer on n-GaN by electrochemical process in mixed solution with glycol and water”, J. J. Appl. Phys., 46 (2007) 1471.
    [49] H. Elhouichet, S. Daboussi, H. Ajlani, A. Najar, A.Moadhen, M. Oueslati, I. M. Tiginyanu, S. Langa, and H. Foll, “Strong visible emission from porous GaP doped with Eu and Tb ions”, J. Lumin., 113 (2005) 329.
    [50] F. J. P. Schuurmans, D. Vanmaekelbergh, J.van de Lagemaat, A. Lagendijk, “Strongly Photonic Macroporous Gallium Phosphide Networks”, Science, 284 (1999) 141.
    [51] F. J. P. Schuurmans, M. Megens, D. Vanmaekelbergh, and A. Lagendijk, “Light Scattering near the Localization Transition in Macroporous GaP Networks”, The American Physical Society, 83(1999)2183.
    [52] E. Fred Schubert, “Light-emitting diodes”, 2nd ed., Cambridge University Press, (2006).
    [53] M. A. Steves-kalceff, I. M. Tiginyanu, S. Langa, H. Foll, and H. L. Hartnagel, “Correlation between morphology and cathodoluminescence in porous GaP”, Journal of applied physics, 89 (2001) 2560.
    [54] S. Langa, I. M. Tiginyanu, J. Carstensen, M. Christophersen, and H. Foll, “Self-organized growth of single crystals of nanopores”, Appl. Phys. Lett., 82 (2003) 278.
    [55] S. Langa, I. M. Tiginyanu, J. Carstensen, M. Christophersen, and H. Föll “Self-organized growth of single crystals of nanopores”, Electrochim., Acta 49 (2004) 3129.
    [56] H. Foll, S. Langa, J. Carstensen, M. Christrophersen, and I. M. Tiginyanu, “Pores in III-V Semiconductors”, Adv. Mater., 15 (2003) 183.
    [57] K. Tomioka and S. Adachi, “Structural and photoluminescence properties of porous GaP formed by electrochemical etching”, J. Appl. Phys., 98 (2005) 073511.
    [58] V. V. Ursaki, F. J. Manjon, K. Syassen, I. M. Tiginyanu, G. Irmer, and J. Monecke, “Raman-active modes of porous gallium phosphide at high pressures and low temperatures”, J. Phys.: Condens. Matter , 14 (2002) 13879.
    [59] V. Ichizli, H. L. Hartnagel, H. Mimura, H. Shimawaki, and K. Yokoo, “Field emission from porous (100) GaP with modified morphology”, Appl. Phys. Lett., 79 (2001) 4016.
    [60] J. P. O’Sullivan and G. C. Wood, “The morphology and mechanism of formation of porous anodic films on aluminium”, Proc. R. Soc. (London) A, 317 (1970) 511.
    [61] D. A. Vermilyea, “Stresses in anodic films”, J. Electrochem. Soc. 110 (1963) 345.
    [62] M. A. Heine and M. J. Pryor, “The distribution of A-C resistance in oxide films on aluminium”, J. Electrochem. Soc., 110 (1963) 1205.
    [63] A. J. Brock, and G. C. Wood, “Studies on the structure of anodic oxide films on aluminium”, Electrochim. Acta, 12 (1967) 395.
    [64] J. A. Davis, B. Domeij, J. P. S. Pringle, and F. Brown, “The migration of metal and oxygen during anodic film formation”, J. Electrochem. Soc. 112 (1965) 675.
    [65] T. P. Hoar, D. C. Mears, and G. P. Rothwell, “The relationships between anodic passivity, brightening and pitting”, Corros. Sci. 5 (1965) 279.
    [66] G. T. Roger, P. H. G. Draper, and S. S. Wood, “Information on anodic oxide on valve metals : oxide growth at constant rate of voltage increase”, Electrochim. Acta 13 (1968) 251.
    [67] G. E. Thompson, R. C. Furneaux, G. C. Wood, J. A. Richarodson, and J. S. Goode, “Nucleation and growth of porous anodic films on aluminium”, Nature, 272 (1978) 433.
    [68] E. Suganuma, Y. Tanno, I. Umetsu, A. Funakoshi, and K. Matsuki, “Factors affecting the formation of a porous layer during AC etching of aluminium in HCl solution”,表面技術, 42 (1991) 928.
    [69] G. E. Thompson and G. C. Wood, “Corrosion:Aqueous process and passive films”, Treatise on Material Science and Technology, 23(1983) p205, Academic Press Inc.
    [70] F. Y. Li, L. Zhang and R. M. Metzger, “On the growth of highly ordered pores in anodized aluminum oxide”, Chem. Mater., 10 (1998) 2470.
    [71] A. R. Clawson, “Guide to references on III-V semiconductor chemical etching”, Materials Science and Engineering R, 31 (2001) 1.
    [72] B. H. Erne, D. Vanmaekelbergh, and J. J. Kelly, “Morphology and strongly enhanced photoresponse of GaP electrodes made porous by anodic etching”, J. Electrochem. Soc., 143 (1996) 305.
    [73] J. Cazes, “Encyclopedia of chromatography”, Taylor & Francis, (2005) p.837.
    [74] R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Bredas, M. Logdlund, and W. R. Salaneck, “Electroluminescence in conjugated polymers”, Nature, 397 (1999) 121.
    [75] K. Sarmini and E. Kenndler, “Ionization constants of weak acids and bases in ethanoic solvents”, Journal of Biochemical and Biophysical Methods, 38 (1999) 123.
    [76] Maryadele J. O'Neil , “Merk Index of Chemicals and Drugs”, Wiley, 14th ed (2003)
    [77] A. F. Van Driel, B. P. J. Bret, D. Vanmaekelbergh, and J. J. Kelly, “Hot carrier luminescence during porous etching of GaP under high electric field conditions”, Surface Science, 529 (2003) 197.
    [78] K. Tomioka, and S. Adachi, “Structural and photoluminescence properties of porous GaP formed by electrochemical etching”, Journal of Applied Physics, 98 (2005) 073511.
    [79] M. Fox, “Optical properties of solids”, Oxford, New York, (1981).
    [80] S. M. Sze, “Physics of semiconductor devices”, New York: Wiley, (1981).
    [81] J. I. Pankove, “Optical processes in semiconductors”, Dover Publications, New York, (1975).
    [82] D. Vanmaekelbergh, B. H. Erne, C. W. Cheung, and R. W. Tjerkstra, “On the increase of the photocurrent quantum efficiency of GaP photoanodes due to (photo) anodic pretreatments”, Electrochimica Acta, 40 (1995) 689.
    [83] I. M. Tiginyanu, G. Irmer, J. Monecke, and H. L. Hartnagel, “Micro-Raman-scattering study of surface-related phonon modes in porous GaP”, Physical Review B, 55 (1997) 6739.
    [84] A. Sarua, I. M. Tiginyanu, V. V. Ursaki, G. Irmer, J. Monecke, and H. L. Hartnagel, “Charge carrier distribution in free-standing porous GaP membranes studied by Raman spectroscopy”, Solid state communication, 112 (1999) 581.
    [85] V. Kochergina and M. Christophersen, “Adjustable optical anisotropy in porous GaAs”, Appl. Phys. Lett., 86 (2005) 042108.
    [86] S. Langa, J. Carstensen, M. Christophersen, and H. Foll, “Observation of crossing pores in anodically etched n-GaAs”, Appl. Phys. Lett., 78 (2001) 1075.
    [87] J. Carstensen, R. Prange, G. S. Popkirov, and H. Foll, “A model for current oscillations in the Si-HF system based on a quantitative analysis of current transients”, Appl. Phys. A, 67 (1998) 459.
    [88] J. Carstensen, M. Christophersen, and H. Foll, “Pore formation mechanisms for the Si-HF system”, Materials Science and Engineering B, 69 (2000) 23.
    [89] O. Nast, S. Rauscher, H. Jungblut, and H. J. Lewernz, “Micromorphology changes of silicon oxide on Si(111) during current oscillations: a comparative in situ AFM and FTIR study”, Journal of Electroanalytical Chemistry, 422 (1998) 169.
    [90] H. Foll, J. Carstensen, S. Langa, M. Christophersen, and I. M. Tiginyanu, “Porous III–V compound semiconductors: formation, properties, and comparison to silicon”, Phys. Stat. Sol., 197 (2003) 61.
    [91] J. N. Chazalviel, and F. Ozanam, “A Theory for the resonant response of an electrochemical system: self-Oscillating domains, hidden qscillation, and synchronization impedance”, J. Electrochem. Soc., 139 (1992) 2501.
    [92] L. Stroebel and R. D. Zakia,“The focal encyclopedia of photography: digital imaging, theory and applications, history, and science”, 3rd ed., Focal Press, (1993).
    [93] D .L. Cui, J. Q. Pan, Z. C. Zhang, B. B. Huang, X. Y. Qin, and M. H. Jiang, “The Stability and Surface Reactivity of Gallium Phosphide Nanocrystals”, Crystal Growth and Characterization of Materials, 40 (2000) 145
    [94] H. Tsuchiya, M. Hueppe, T. Djenizian, P. Schmuki, and S. Fujimoto, “Morphological characterization of porous InP superlattice”, Science and Technology of Advanced Materials, 5 (2004) 119.
    [95] J. H. Epple, K. L. Chang, G. W. Pickrell, K. Y. Cheng, and K. C. Hsieh, “Thermal wet oxidation of GaP and Al0.4Ga0.6P”, Appl. Phys. Lett., 77 (2000) 1161.
    [96] J. Zheng, 1, M. Christophersen, and P. L. Bergstrom1, “Formation technique for macroporous morphology superlattice”, Phys. Stat. Sol. , 202 (2005) 1662.
    [97] H. Tsuchiya, M. Hueppe, T. Djenizian, and P. Schmuki, “Electrochemical formation of porous superlattices on n-type (100) InP”, Surf. Sci., 547 (2003) 268.
    [98] P. Schmuki, L. E. Erickson, D. J. Lockwood, J. W. Fraser, G. Champion, and H. J. Labbe, “Formation of visible light emitting porous GaAs micropatterns”, Appl. Phys. Lett., 72 ( 1998) 1039.
    [99] A. F. Van Driel, D. Vanmaekelbergh, and J. J. Kelly, “Electroluminescence as internal light source for measurement of the photonic strength of random porous GaP”, Appl. Phys. Lett., 84 (2004) 3852.
    [100] J. Wloka, K. Mueller, and P. Schmuki, “Pore morphology and self-organization effects during etching of n-type GaP(100) in bromide solutions”, Electrochemical and Solid-State Letters, 8 (2005) B72.

    無法下載圖示 校內:2021-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE