簡易檢索 / 詳目顯示

研究生: 李冠蓁
Li, Guan-Zhen
論文名稱: 透過分析植物高通量基因表達資料建構調控途徑與共表現網路之資料庫
Construction of a database for identifying regulatory pathways and coexpression networks from plant high-throughput gene expression data
指導教授: 張文綺
Chang, Wen-Chi
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 熱帶植物科學研究所
Institute of Tropical Plant Sciences
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 66
中文關鍵詞: 生物晶片代謝途徑基因表現基因調控轉錄因子啟動子分析
外文關鍵詞: microarray, metabolic pathways, comparative expression analysis, promoter analysis, transcription factors
相關次數: 點閱:118下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前有許多高通量技術,例如生物晶片和次世代定序,被應用於分析並了解植物在不同生長發育階段與逆境之下的基因表達的變化情形。ㄧ般而言,具有差異性表達的基因在許多生物途徑上都扮演非常重要的調控角色。現今已有許多生物資源收錄這些高通量的基因表達資料,然而,要如何從這些基因表現大數據中找出具有生物價值的調控機制則顯得格外重要。先前實驗室的成員建立了EXPath資料庫,可以針對植物高通量基因表達資料與代謝途徑進行整合性的分析,以了解不同生物或非生物逆境下,差異表達基因所參與的代謝途徑與功能。可惜的是,EXPath目前僅能分析阿拉伯芥、水稻和玉米,無法對其他植物進行分析。另一方面,也無法透過EXPath了解有哪些轉錄因子參與在代謝途徑的調控網路上。因此,本研究的目的是希望能改善EXPath的缺點以提高它的實用性。其主要的改善項目分別為:(1)增加三個模式經濟作物(苜蓿、大豆、番茄)的相關資訊。(2)增加植物不同生長發育階段的基因表現數據。(3)提供轉錄因子調控資訊,例如:了解有哪些轉錄因子參與在同一代謝途徑或是共表達(co-expression)基因群中。(4)建構一群基因在不同條件下之相關性網路(correlation networks)。(5)提供使用者上傳表現量資料進行代謝途徑與轉錄因子調節機制的比較分析。我們希望透過EXPath資料庫的更新,能夠對植物代謝途徑的調控機制有更多的了解,此研究成果能透過http://expath.itps.ncku.edu.tw/網頁中取得相關資訊。

    In order to have a healthy life cycle and adapt to environmental stresses, gene expression is accurately regulated in plant. Generally, genes with differentially expressed values or similar expression pattern (co-expression) among different samples might play critical roles in some specific biological pathways. In addition, transcription factor (TF) and their binding sites (TFBSs) are essential regulator in numerous biological processes. Therefore, investigation of TF/TFBSs in a regulatory network can help to understand plant adaptation strategy. Although co-expressed genes and their related metabolic pathways could be easily identified from previous resources such as EXPath and EXPath Tool. However, the analysis of TFs regulation and organ/tissue/stage- specific genes cannot be retrieved from those platforms. In this EXPath update version (EXPath 2.0), 1881 microarray samples from various developmental stages and stresses from six plants including Arabidopsis, rice, maize, Medicago, soybean and tomato were integrated, respectively. Besides updating the pre-existing five functions (Gene Search, Pathway Search, DEGs Search, Pathway/GO Enrichment, Co-expression Analysis), five significant improvements were developed and differed from previous version. (i) Extending high-throughput data from three to six plants. (ii) Stage-specific genes can be retrieved from various developmental stages. (iii) A correlation network according to a group of input genes can be constructed. (iv) TFs in a specific pathway or co-expression network can be investigated. (v) Comparative analysis of metabolic pathways and TF regulatory mechanisms in an input gene group are available. EXPath 2.0 is a conveniently resource for investigating gene expression in metabolic pathways under specific conditions and facilitates users to access the regulatory mechanisms of the critical bio-pathways from plant high-throughput data. This database is freely available at http://EXPath.itps.ncku.edu.tw.

    考試合格證明 # 中英文摘要 I 誌謝 VIII 目錄 IX 表目錄 XI 圖目錄 XII 附錄 XIV 一、研究背景 1 1-1 環境變化對植物的影響 1 1-2 基因的表現及調控機制扮演重要角色 1 1-3 高通量技術廣泛應用於基因表現量變化之分析 3 1-4 現今分析基因表現與代謝途徑之相關生物資訊平台 4 1-5 研究目的 4 二、資料蒐集與方法 6 2-1 彙整生物晶片(microarray)的基因表現資料 7 2-2 數據處理及正規化(normalization) 7 2-3 整合基因註釋(annotation)及啟動子數據 8 2-4 代謝途徑之功能分析 9 2-5 代謝途徑及功能顯著性分析(enrichment analysis) 9 2-6 發育階段之特異性基因表現分析 10 2-7 差異性基因表達分析 10 2-8 共同表現基因群的相關性網路分析 11 2-9 特定生物途徑或共同表現網路之基因群啟動子分析 12 三、結果與討論 13 3-1 EXPath2.0資料庫建置的策略及規劃 13 3-2 EXPath2.0資料庫之五大分析功能 14 3-2-1 基因搜索(Gene search) 14 3-2-2 代謝途徑搜索(Pathway search) 14 3-2-3 差異表現基因搜索(DEGs search) 15 3-2-4 代謝途徑及功能顯著性分析(Pathways/GOs enrichment) 15 3-2-5 共同表現基因分析(Co-expression analysis) 16 3-3 案例說明(一):共同表現基因網路及啟動子分析 16 3-4 案例說明(二):找出參與在水稻花藥發育的重要基因 18 3-5 案例說明(三):辨認參與葉黃素(Lutein)生合成之重要轉錄因子 19 四、結論 21 五、參考文獻 22

    Aya, K., Ueguchi-Tanaka, M., Kondo, M., Hamada, K., Yano, K., Nishimura, M., & Matsuoka, M. (2009). Gibberellin modulates anther development in rice via the transcriptional regulation of GAMYB. Plant Cell, 21(5), 1453-1472. doi:10.1105/tpc.108.062935
    Bak, S., Beisson, F., Bishop, G., Hamberger, B., Hofer, R., Paquette, S., & Werck-Reichhart, D. (2011). Cytochromes p450. Arabidopsis Book, 9, e0144. doi:10.1199/tab.0144
    Barah, P., B, N. M., Jayavelu, N. D., Sowdhamini, R., Shameer, K., & Bones, A. M. (2016). Transcriptional regulatory networks in Arabidopsis thaliana during single and combined stresses. Nucleic Acids Res, 44(7), 3147-3164. doi:10.1093/nar/gkv1463
    Beltrame, L., Bianco, L., Fontana, P., & Cavalieri, D. (2013). Pathway Processor 2.0: a web resource for pathway-based analysis of high-throughput data. Bioinformatics, 29(14), 1825-1826. doi:10.1093/bioinformatics/btt292
    Bombarely, A., Menda, N., Tecle, I. Y., Buels, R. M., Strickler, S., Fischer-York, T., . . . Mueller, L. A. (2011). The Sol Genomics Network (solgenomics.net): growing tomatoes using Perl. Nucleic Acids Res, 39(Database issue), D1149-1155. doi:10.1093/nar/gkq866
    Boratyn, G. M., Camacho, C., Cooper, P. S., Coulouris, G., Fong, A., Ma, N., . . . Zaretskaya, I. (2013). BLAST: a more efficient report with usability improvements. Nucleic Acids Res, 41(Web Server issue), W29-33. doi:10.1093/nar/gkt282
    Cazzonelli, C. I., & Pogson, B. J. (2010). Source to sink: regulation of carotenoid biosynthesis in plants. Trends Plant Sci, 15(5), 266-274. doi:10.1016/j.tplants.2010.02.003
    Cheadle, C., Vawter, M. P., Freed, W. J., & Becker, K. G. (2003). Analysis of microarray data using Z score transformation. J Mol Diagn, 5(2), 73-81. doi:10.1016/S1525-1578(10)60455-2
    Chien, C. H., Chow, C. N., Wu, N. Y., Chiang-Hsieh, Y. F., Hou, P. F., & Chang, W. C. (2015). EXPath: a database of comparative expression analysis inferring metabolic pathways for plants. BMC Genomics, 16 Suppl 2, S6. doi:10.1186/1471-2164-16-S2-S6
    Chow, C. N., Zheng, H. Q., Wu, N. Y., Chien, C. H., Huang, H. D., Lee, T. Y., . . . Chang, W. C. (2016). PlantPAN 2.0: an update of plant promoter analysis navigator for reconstructing transcriptional regulatory networks in plants. Nucleic Acids Res, 44(D1), D1154-1160. doi:10.1093/nar/gkv1035
    Cunningham, F. X. (2002). Regulation of carotenoid synthesis and accumulation in plants. Pure and Applied Chemistry, 74(8), 1409-1417. doi:DOI 10.1351/pac200274081409
    Edgar, R., Domrachev, M., & Lash, A. E. (2002). Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res, 30(1), 207-210.
    Garg, R., Tyagi, A. K., & Jain, M. (2012). Microarray analysis reveals overlapping and specific transcriptional responses to different plant hormones in rice. Plant Signal Behav, 7(8), 951-956. doi:10.4161/psb.20910
    Garrity, G. M., Banfield, J., Eisen, J., van der Lelie, N., McMahon, T., Rusch, D., . . . Stepanauskas, R. (2013). Prokaryotic Super Program Advisory Committee DOE Joint Genome Institute, Walnut Creek, CA, March 27, 2013. Stand Genomic Sci, 8(3), 561-570. doi:10.4056/sigs.4638348
    Garwin, J. L., Klages, A. L., & Cronan, J. E. (1980). Structural, Enzymatic, and Genetic-Studies of Beta-Ketoacyl-Acyl Carrier Protein Synthases I and Ii Escherichia-Coli. Journal of Biological Chemistry, 255(24), 1949-1956.
    Gautier, L., Cope, L., Bolstad, B. M., & Irizarry, R. A. (2004). affy--analysis of Affymetrix GeneChip data at the probe level. Bioinformatics, 20(3), 307-315. doi:10.1093/bioinformatics/btg405
    Goda, H., Sasaki, E., Akiyama, K., Maruyama-Nakashita, A., Nakabayashi, K., Li, W. Q., . . . Shimada, Y. (2008). The AtGenExpress hormone and chemical treatment data set: experimental design, data evaluation, model data analysis and data access. Plant Journal, 55(3), 526-542. doi:10.1111/j.1365-313X.2008.03510.x
    Goel, A. K., Lundberg, D., Torres, M. A., Matthews, R., Akimoto-Tomiyama, C., Farmer, L., . . . Grant, S. R. (2008). The Pseudomonas syringae type III effector HopAM1 enhances virulence on water-stressed plants. Mol Plant Microbe Interact, 21(3), 361-370. doi:10.1094/MPMI-21-3-0361
    Grant, D., Nelson, R. T., Cannon, S. B., & Shoemaker, R. C. (2010). SoyBase, the USDA-ARS soybean genetics and genomics database. Nucleic Acids Res, 38(Database issue), D843-846. doi:10.1093/nar/gkp798
    Guo M, L. J., Ma X, Luo DX, Gong ZH, Lu MH. (2016). The Plant Heat Stress Transcription Factors (HSFs): Structure, Regulation, and Function in Response to Abiotic Stresses. Front Plant Sci., 7, 114.
    Harper, L., Gardiner, J., Andorf, C., & Lawrence, C. J. (2016). MaizeGDB: The Maize Genetics and Genomics Database. Methods Mol Biol, 1374, 187-202. doi:10.1007/978-1-4939-3167-5_9
    Irizarry, R. A., Bolstad, B. M., Collin, F., Cope, L. M., Hobbs, B., & Speed, T. P. (2003). Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res, 31(4), e15.
    Irizarry, R. A., Hobbs, B., Collin, F., Beazer-Barclay, Y. D., Antonellis, K. J., Scherf, U., & Speed, T. P. (2003). Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics, 4(2), 249-264. doi:10.1093/biostatistics/4.2.249
    Jin, J., Tian, F., Yang, D. C., Meng, Y. Q., Kong, L., Luo, J., & Gao, G. (2017). PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Res, 45(D1), D1040-D1045. doi:10.1093/nar/gkw982
    Kanehisa, M., Goto, S., Hattori, M., Aoki-Kinoshita, K. F., Itoh, M., Kawashima, S., . . . Hirakawa, M. (2006). From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res, 34(Database issue), D354-357. doi:10.1093/nar/gkj102
    Kapushesky, M., Adamusiak, T., Burdett, T., Culhane, A., Farne, A., Filippov, A., . . . Brazma, A. (2012). Gene Expression Atlas update--a value-added database of microarray and sequencing-based functional genomics experiments. Nucleic Acids Res, 40(Database issue), D1077-1081. doi:10.1093/nar/gkr913
    Kardailsky, I., Shukla, V. K., Ahn, J. H., Dagenais, N., Christensen, S. K., Nguyen, J. T., . . . Weigel, D. (1999). Activation tagging of the floral inducer FT. Science, 286(5446), 1962-1965. doi:DOI 10.1126/science.286.5446.1962
    Khachik, F., London, E., de Moura, F. F., Johnson, M., Steidl, S., Detolla, L., . . . Fowler, B. (2006). Chronic ingestion of (3R,3'R,6'R)-lutein and (3R,3'R)-zeaxanthin in the female rhesus macaque. Invest Ophthalmol Vis Sci, 47(12), 5476-5486. doi:10.1167/iovs.06-0194
    Kobayashi, Y., Kaya, H., Goto, K., Iwabuchi, M., & Araki, T. (1999). A pair of related genes with antagonistic roles in mediating flowering signals. Science, 286(5446), 1960-1962. doi:DOI 10.1126/science.286.5446.1960
    Koornneef, M., Alonso-Blanco, C., Blankestijn-de Vries, H., Hanhart, C. J., & Peeters, A. J. M. (1998). Genetic interactions among late-flowering mutants of Arabidopsis. Genetics, 148(2), 885-892.
    Kosma, D. K., Bourdenx, B., Bernard, A., Parsons, E. P., Lu, S., Joubes, J., & Jenks, M. A. (2009). The Impact of Water Deficiency on Leaf Cuticle Lipids of Arabidopsis. Plant Physiology, 151(4), 1918-1929. doi:10.1104/pp.109.141911
    Krishnakumar, V., Kim, M., Rosen, B. D., Karamycheva, S., Bidwell, S. L., Tang, H., & Town, C. D. (2015). MTGD: The Medicago truncatula genome database. Plant Cell Physiol, 56(1), e1. doi:10.1093/pcp/pcu179
    Kuan, J. (2015). Learning highcharts 4: Packt Publishing Ltd.
    Lamesch, P., Berardini, T. Z., Li, D., Swarbreck, D., Wilks, C., Sasidharan, R., . . . Huala, E. (2012). The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools. Nucleic Acids Res, 40(Database issue), D1202-1210. doi:10.1093/nar/gkr1090
    Li, J., Zhu, L., Hull, J. J., Liang, S., Daniell, H., Jin, S., & Zhang, X. (2016). Transcriptome analysis reveals a comprehensive insect resistance response mechanism in cotton to infestation by the phloem feeding insect Bemisia tabaci (whitefly). Plant Biotechnol J, 14(10), 1956-1975. doi:10.1111/pbi.12554
    Lopes, C. T., Franz, M., Kazi, F., Donaldson, S. L., Morris, Q., & Bader, G. D. (2010). Cytoscape Web: an interactive web-based network browser. Bioinformatics, 26(18), 2347-2348. doi:10.1093/bioinformatics/btq430
    Lu, S., & Li, L. (2008). Carotenoid metabolism: biosynthesis, regulation, and beyond. J Integr Plant Biol, 50(7), 778-785. doi:10.1111/j.1744-7909.2008.00708.x
    Ma, G., Zhang, L., Yungyuen, W., Tsukamoto, I., Iijima, N., Oikawa, M., . . . Kato, M. (2016). Expression and functional analysis of citrus carotene hydroxylases: unravelling the xanthophyll biosynthesis in citrus fruits. Bmc Plant Biology, 16(1), 148. doi:10.1186/s12870-016-0840-2
    Ma, L., Li, J., Qu, L., Hager, J., Chen, Z., Zhao, H., & Deng, X. W. (2001). Light control of Arabidopsis development entails coordinated regulation of genome expression and cellular pathways. Plant Cell, 13(12), 2589-2607.
    Ma, N. N., Feng, H. L., Meng, X., Li, D., Yang, D. Y., Wu, C. G., & Meng, Q. W. (2014). Overexpression of tomato SlNAC1 transcription factor alters fruit pigmentation and softening. Bmc Plant Biology, 14. doi:ARTN 351 10.1186/s12870-014-0351-y
    Malone, J. H., & Oliver, B. (2011). Microarrays, deep sequencing and the true measure of the transcriptome. BMC Biol, 9, 34. doi:10.1186/1741-7007-9-34
    Matousek, J., Piernikarczyk, R. J. J., Tycova, A., Duraisamy, G. S., Kocabek, T., & Steger, G. (2015). Expression of SANT/HTH Myb mRNA, a plant morphogenesis-regulating transcription factor, changes due to viroid infection. Journal of Plant Physiology, 183, 85-94. doi:10.1016/j.jplph.2015.06.001
    Matys, V., Fricke, E., Geffers, R., Gossling, E., Haubrock, M., Hehl, R., . . . Wingender, E. (2003). TRANSFAC: transcriptional regulation, from patterns to profiles. Nucleic Acids Res, 31(1), 374-378.
    Mukaka, M. M. (2012). Statistics Corner: A guide to appropriate use of Correlation coefficient in medical research. Malawi Medical Journal, 24(3), 69-71.
    Murray, F., Kalla, R., Jacobsen, J., & Gubler, F. (2003). A role for HvGAMYB in anther development. Plant J, 33(3), 481-491.
    Naika, M., Shameer, K., Mathew, O. K., Gowda, R., & Sowdhamini, R. (2013). STIFDB2: an updated version of plant stress-responsive transcription factor database with additional stress signals, stress-responsive transcription factor binding sites and stress-responsive genes in Arabidopsis and rice. Plant Cell Physiol, 54(2), e8. doi:10.1093/pcp/pcs185
    Naoumkina, M. A., He, X. Z., & Dixon, R. A. (2008). Elicitor-induced transcription factors for metabolic reprogramming of secondary metabolism in Medicago truncatula. Bmc Plant Biology, 8. doi:Artn 132 10.1186/1471-2229-8-132
    Pandey, P., Ramegowda, V., & Senthil-Kumar, M. (2015). Shared and unique responses of plants to multiple individual stresses and stress combinations: physiological and molecular mechanisms. Front Plant Sci, 6, 723. doi:10.3389/fpls.2015.00723
    Pandey, S. P., & Somssich, I. E. (2009). The role of WRKY transcription factors in plant immunity. Plant Physiol, 150(4), 1648-1655. doi:10.1104/pp.109.138990
    Paponov, I. A., Paponov, M., Teale, W., Menges, M., Chakrabortee, S., Murray, J. A., & Palme, K. (2008). Comprehensive transcriptome analysis of auxin responses in Arabidopsis. Molecular Plant, 1(2), 321-337. doi:10.1093/mp/ssm021
    Parkinson, H., Kapushesky, M., Shojatalab, M., Abeygunawardena, N., Coulson, R., Farne, A., . . . Brazma, A. (2007). ArrayExpress--a public database of microarray experiments and gene expression profiles. Nucleic Acids Res, 35(Database issue), D747-750. doi:10.1093/nar/gkl995
    Priya, P., & Jain, M. (2013). RiceSRTFDB: a database of rice transcription factors containing comprehensive expression, cis-regulatory element and mutant information to facilitate gene function analysis. Database (Oxford), 2013, bat027. doi:10.1093/database/bat027
    Probert, R. J., Daws, M. I., & Hay, F. R. (2009). Ecological correlates of ex situ seed longevity: a comparative study on 195 species. Annals of Botany, 104(1), 57-69. doi:10.1093/aob/mcp082
    Quackenbush, J. (2002). Microarray data normalization and transformation. Nat Genet, 32 Suppl, 496-501. doi:10.1038/ng1032
    Ran, X., Liu, J., Qi, M., Wang, Y., Cheng, J., & Zhang, Y. (2018). GSHR, a Web-Based Platform Provides Gene Set-Level Analyses of Hormone Responses in Arabidopsis. Front Plant Sci, 9, 23. doi:10.3389/fpls.2018.00023
    Rejeb, I. B., Pastor, V., & Mauch-Mani, B. (2014). Plant Responses to Simultaneous Biotic and Abiotic Stress: Molecular Mechanisms. Plants (Basel), 3(4), 458-475. doi:10.3390/plants3040458
    Righetti, K., Vu, J. L., Pelletier, S., Vu, B. L., Glaab, E., Lalanne, D., . . . Buitink, J. (2015). Inference of Longevity-Related Genes from a Robust Coexpression Network of Seed Maturation Identifies Regulators Linking Seed Storability to Biotic Defense-Related Pathways. Plant Cell, 27(10), 2692-2708. doi:10.1105/tpc.15.00632
    Rodriguez-Villalon, A., Gas, E., & Rodriguez-Concepcion, M. (2009). Phytoene synthase activity controls the biosynthesis of carotenoids and the supply of their metabolic precursors in dark-grown Arabidopsis seedlings. Plant Journal, 60(3), 424-435. doi:10.1111/j.1365-313X.2009.03966.x
    RuizGarcia, L., Madueno, F., Wilkinson, M., Haughn, G., Salinas, J., & MartinezZapater, J. M. (1997). Different roles of flowering-time genes in the activation of floral initiation genes in Arabidopsis. Plant Cell, 9(11), 1921-1934.
    Sakai, H., Lee, S. S., Tanaka, T., Numa, H., Kim, J., Kawahara, Y., . . . Itoh, T. (2013). Rice Annotation Project Database (RAP-DB): an integrative and interactive database for rice genomics. Plant Cell Physiol, 54(2), e6. doi:10.1093/pcp/pcs183
    Sato, Y., Takehisa, H., Kamatsuki, K., Minami, H., Namiki, N., Ikawa, H., . . . Nagamura, Y. (2013). RiceXPro Version 3.0: expanding the informatics resource for rice transcriptome. Nucleic Acids Research, 41(D1), D1206-D1213. doi:10.1093/nar/gks1125
    Sharma, N., Bhalla, P. L., & Singh, M. B. (2013). Transcriptome-wide profiling and expression analysis of transcription factor families in a liverwort, Marchantia polymorpha. BMC Genomics, 14, 915. doi:10.1186/1471-2164-14-915
    Suzuki, T., Maeda, A., Hirose, M., Ichinose, Y., Shiraishi, T., & Toyoda, K. (2017). Ultrastructural and Cytological Studies on Mycosphaerella pinodes Infection of the Model Legume Medicago truncatula. Front Plant Sci, 8, 1132. doi:10.3389/fpls.2017.01132
    Tautz, D. (2000). Evolution of transcriptional regulation. Curr Opin Genet Dev, 10(5), 575-579.
    Toledo-Ortiz, G., Huq, E., & Rodriguez-Concepcion, M. (2010). Direct regulation of phytoene synthase gene expression and carotenoid biosynthesis by phytochrome-interacting factors. Proc Natl Acad Sci U S A, 107(25), 11626-11631. doi:10.1073/pnas.0914428107
    Welsch, R., Maass, D., Voegel, T., DellaPenna, D., & Beyer, P. (2007). Transcription factor RAP2.2 and its interacting partner SINAT2: Stable elements in the carotenogenesis of Arabidopsis leaves. Plant Physiology, 145(3), 1073-1085. doi:10.1104/pp.107.104828
    Xu, P., & Cai, W. (2017). Functional characterization of the BnNCED3 gene in Brassica napus. Plant Science, 256, 16-24. doi:10.1016/j.plantsci.2016.11.012
    Zheng, H. Q., Chiang-Hsieh, Y. F., Chien, C. H., Hsu, B. K., Liu, T. L., Chen, C. N., & Chang, W. C. (2014). AlgaePath: comprehensive analysis of metabolic pathways using transcript abundance data from next-generation sequencing in green algae. BMC Genomics, 15, 196. doi:10.1186/1471-2164-15-196
    Zheng, H. Q., Wu, N. Y., Chow, C. N., Tseng, K. C., Chien, C. H., Hung, Y. C., . . . Chang, W. C. (2017). EXPath tool-a system for comprehensively analyzing regulatory pathways and coexpression networks from high-throughput transcriptome data. DNA Res. doi:10.1093/dnares/dsx009

    無法下載圖示 校內:2023-08-27公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE