簡易檢索 / 詳目顯示

研究生: 王俊凱
Wang, Jun-Kai
論文名稱: 預混焰於微管槽內加速機制之研究
A study on the mechanisms of flame acceleration in micro tubes and channels
指導教授: 吳明勳
Wu, Ming-Hsun
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 154
中文關鍵詞: 緩燃焰爆震焰微管槽
外文關鍵詞: deflagration, detonation, DDT, microscale
相關次數: 點閱:68下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究分別以數值模擬與實驗方法,針對預混焰在毫米尺度微管槽內加速傳遞及緩燃焰轉爆震焰機制進行探討。透過包含多步化學動力反應模型之三維暫態反應流模擬,解析火焰加速傳遞過程;並配合高速攝影、紋影顯影及碳膜顯影,分別對於火焰傳遞、火焰結構及震波結構進行實驗研究。研究中以數值模擬探討熱邊界、管槽尺度、截面形狀、當量比及點火方式對火焰加速之影響。在絕熱壁面、較小尺度、圓形截面、化學當量下燃氣比例及環狀點火條件下,火焰較快由緩燃焰進入爆震焰。各模擬案例皆不解析紊流方程,故紊流並非緩燃焰轉爆震焰產生之必要條件。於緩燃焰階段,因高溫已燃氣體膨脹對火焰面前未燃氣體進行預壓縮。微管邊界層效應使氣流阻滯,造成燃燒壓力的提升並使單位時間燃氣消耗量增加。此效應與燃氣膨脹形成正向循環,加速火焰最終產生局部爆炸,轉變成爆震焰。在實驗觀察部分,則分別使用氮氣、氬氣、氦氣及二氧化碳做為稀釋氣體,探討氣體稀釋對於火焰傳遞動態之影響。結果顯示稀釋比例提高,除了火焰亮度降低外,爆震焰產生前會有不穩定震盪現象的產生。火焰及震波結構顯影顯示,氫/氧焰傳遞初期有鬱金香焰產生。在以10 %氮氣稀釋之化學當量乙烯/氧氣所進行之碳膜實驗中歸納得知,爆震焰產生初期細胞長度(cell length)約為0.75 mm;於穩定爆震焰傳遞區間,細胞長度則約為1.75 mm。

    The objectives of the present research were to study the mechanisms of flame acceleration and deflagration-to-detonation transition (DDT) in microscale tubes and channels. Both 3D transient reacting flow simulations with detailed chemical mechanisms and experimental approaches were applied. High speed cinematography, schlieren visualization, and soot film method are utilized to reveal the flame evolution, flame structure, and detonation cell structure, respectively.
    In the numerical study, the effects of wall thermal boundary condition, tube diameter, shape of the channel cross-section, equivalence ratio, and ignition configuration on the flame propagation were investigated. Adiabatic wall, smaller diameter, circular cross-section, stoichiometric mixture, and ring-shaped ignition configuration were found to be able to faciliate DDT. Since turbulence was not modeled in the simulation, the results implied that the existence of turbulence was not essential for DDT to occur. The mechanism of DDT in microscale tubes relied on the choking effect. The wall constraint and expansion of the burned gas resulted in a pre-compression to the upstream unburned gas, which enhanced mass burning rate. The compression was further enhanced by the increased amount of burned gas. A local explosion eventually occurred due to the excessive compression, and deflagration-to-detonation transition was triggered.
    In the experiments, stoichiometric ethylene/oxygen mixtures were diluted with nitrogen, argon, helium, and carbon dioxide to study to the effect of dilution on flame propagation in microscale channels. The results showed that flame emission intensities decreased. Asymmetrical flame propagation was observed for high dilution ratio. Tulip flame was observed using schlieren method during the early stage of hydrogen/oxygen flame propagation. For stoichiometric ethylene/oxygen mixture diluted with 10 % nitrogen, soot film visualization revealed that detonation cells were about 0.75 mm in the early stage of detonation, and developed to approximately 1.75 mm in stable detonation wave propagation regime.

    摘要 i Abstract ii 致謝 iv 目錄 v 表目錄 viii 圖目錄 ix 符號說明 xix 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 2 1-3 研究目的 7 1-4 本文架構 8 第二章 計算模擬方法 10 2-1 統御方程式 10 2-2 燃燒模型 13 2-3 數值方法 15 2-4 計算模型 16 2-5 獨立性測試 19 第三章 實驗方法 22 3-1 矩形截面微槽實驗系統 22 微槽組成 22 氣體供應系統 24 火花點火系統 30 3-2 取像系統 32 3-3 以高速攝影量測火焰傳遞速度之流程 34 3-4 紋影系統 36 3-5 碳膜顯影法 38 3-6 不確定分析 38 第四章 微管槽內火焰傳遞之模擬 43 4-1 熱邊界條件對火焰傳遞動態之影響 43 4-2 管槽尺度對火焰傳遞動態之影響 58 4-3 管槽幾何截面對於火焰傳遞動態之影響 65 4-4 當量比對火焰傳遞動態之影響 73 4-5 點火方式對於火焰傳遞動態之影響 78 4-6 小結 91 第五章 微槽內緩燃焰加速動態之實驗研究 95 5-1 稀釋比對於火焰傳遞之影響 95 5-2 不同稀釋氣體對於火焰傳遞之影響 110 5-3 火焰結構紋影觀測 118 5-4 微槽內爆震焰胞狀結構分析 119 5-5 小結 140 第六章 結論與未來展望 142 6-1 結論 142 6-2 未來展望 143 參考文獻 145 附錄 A STAR-CD後處理巨集 149 A-1 火焰傳遞速度計算指令巨集 149 Pro-star溫度場輸出巨集 149 Matlab火焰位置判定巨集 150 A-2 溫度場截面圖繪製巨集 152 A-3 軸向溫度分布資料輸出巨集 153

    [1] Y. B. Zel'dovich, S. M. Kogarko, and N. N. Simonov (1957), An experimental investigation of spherical detonation in gases, Sov. Phys. Tech. Phys. 1, 1689-1713.
    [2] M. H. Wu, P. Burke, S. F. Son, and R. A. Yetter (2007), Flame acceleration and the transition to detonation of stoichiometric ethylene/oxygen in microscale tubes, Proceedings of the Combustion Institute 31, 2429-2436.
    [3] P. A. Urtiew, and A. K. Oppenheim (1966), Experimental observations of transition to detonation in an explosive gas, Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences 295(1440), 13-28.
    [4] S. B. Dorofeev, V. P. Sidorov, A. E. Dvoinishnikov, and W. Breitung (1996), Deflagration to detonation transition in large confined volume of lean hydrogen-air mixtures, Combustion and Flame 104(1-2), 95-110.
    [5] J. D. Ott, E. S. Oran, and J. D. Anderson (2003), A mechanism for flame acceleration in narrow tubes, AIAA Journal 41(7), 1391-1396.
    [6] V. N. Gamezo, and E. S. Oran (2006), Flame acceleration in narrow channels: Applications for micropropulsion in low-gravity environments, Aiaa Journal 44(2), 329-336.
    [7] I. Brailovsky, and G. I. Sivashinsky (2000), Hydraulic resistance as a mechanism for deflagration-to-detonation transition, Combustion and Flame 122(4), 492-499.
    [8] L. Kagan (2007), On the transition from deflagration to detonation in narrow channels, Math. Model. Nat. Phenom. 2(2), 40-55.
    [9] L. Kagan, and G. Sivashinsky (2003), The transition from deflagration to detonation in thin channels, Combustion and Flame 134(4), 389-397.
    [10] L. Kagan, and G. Sivashinsky (2010), On the transition from deflagration to detonation in narrow tubes, Flow Turbulence and Combustion 84(3), 423-437.
    [11] L. Kagan, and G. Sivashinsky (2008), Autoignition due to hydraulic resistance and deflagration-to-detonation transition, Combustion and Flame 154(1-2), 186-190.
    [12] Z. B. Song, L. J. Wei, and Z. Z. Wu (2008), Effects of heat losses on flame shape and quenching of premixed flames in narrow channels, Combustion Science and Technology 180(2), 264-278.
    [13] V. Bychkov, V. Akkerman, G. Fru, A. Petchenko, and L. E. Eriksson (2007), Flame acceleration in the early stages of burning in tubes, Combustion and Flame 150(4), 263-276.
    [14] V. Bychkov, A. Petchenko, V. Akkerman, and L. E. Eriksson (2005), Theory and modeling of accelerating flames in tubes, Physical Review E 72(4), 1539-3755.
    [15] V. Akkerman, V. Bychkov, A. Petchenko, and L. E. Eriksson (2006), Accelerating flames in cylindrical tubes with nonslip at the walls, Combustion and Flame 145(1-2), 206-219.
    [16] D. Valiev, V. Bychkov, V. Akkerman, L. E. Eriksson, and M. Marklund (2008), Heating of the fuel mixture due to viscous stress ahead of accelerating flames in deflagration-to-detonation transition, Physics Letters A 372(27-28), 4850-4857.
    [17] D. M. Valiev, V. Bychkov, V. Akkerman, and L. E. Eriksson (2009), Different stages of flame acceleration from slow burning to chapman-jouguet deflagration, Physical Review E 80(3), 036317.
    [18] V. Bychkov, V. Y. Akkerman, D. Valiev, and C. K. Law (2010), Role of compressibility in moderating flame acceleration in tubes, Physical Review E 81, 026309.
    [19] C. Clanet, and G. Searby (1996), On the "Tulip flame" Phenomenon, Combustion and Flame 105(1-2), 225-238.
    [20] S. M. Frolov, and B. E. Gelfand (1991), Limit diameter of gas detonation propagation in tubes, Combustion Explosion and Shock Waves 27(1), 113-117.
    [21] O. Peraldi, R. Knystautas, and J. H. Lee (1988), Criteria for transition to detonation in tubes, Symposium (International) on Combustion 21(1), 1629-1637.
    [22] H. S. Dou, and B. C. Khoo (2010), Effect of initial disturbance on the detonation front structure of a narrow duct, Shock Waves 20(2), 163-173.
    [23] S. Kitano, M. Fukao, A. Susa, N. Tsuboi, A. K. Hayashi, and M. Koshi (2009), Spinning detonation and velocity deficit in small diameter tubes, Proceedings of the Combustion Institute 32, 2355-2362.
    [24] K. Nagai, T. Okabe, K. Kim, T. Yoshihashi, T. Obara, and S. Ohyagi (2009), A study on ddt processes in a narrow channel, Shock waves: 26th international symposium on shock waves.
    [25] P. A. Bauer, H. N. Presles, O. Heuze, and C. Brochet (1986), Measurement of cell lengths in the detonation front of hydrocarbon oxygen and nitrogen mixtures at elevated initial pressures, Combustion and Flame 64(1), 113-123.
    [26] J. Li, Z. W. Zhao, A. Kazakov, and F. L. Dryer (2004), An updated comprehensive kinetic model of hydrogen combustion, International Journal of Chemical Kinetics 36(10), 566-575.
    [27] R. A. Baurle, and D. R. Eklund (2002), Analysis of dual-mode hydrocarbon scramjet operation at mach 4-6.5, Journal of Propulsion and Power 18(5), 990-1002.
    [28] R. I. Issa (1986), Solution of the implicitly discretized fluid-flow equations by operator-splitting, Journal of Computational Physics 62(1), 40-65.
    [29] R. I. Issa, B. Ahmadibefrui, K. R. Beshay, and A. D. Gosman (1991), Solution of the implicitly discretized reacting flow equations by operator-splitting, Journal of Computational Physics 93(2), 388-410.
    [30] Cd-Adapco (2008), Star-cd methodology manual.
    [31] K. Y. M. Lai (1983), Numerical analysis of fluid transport phenomena, Ph.D Thesis, University of London.
    [32] M. A. Leschziner (1980), Practical evaluation of three finite difference schemes for the computation of steady-state recirculating flows, Computer Methods in Applied Mechanics and Engineering 23(3), 293-312.
    [33] G. S. Settles (2001), Schlieren and shadowgraph techniques : Visualizing phenomena in transparent media, Springer.


    下載圖示 校內:2013-07-29公開
    校外:2013-07-29公開
    QR CODE