| 研究生: |
石秉玄 Shi, Bing-Xuan |
|---|---|
| 論文名稱: |
聚(N-乙烯甲醯胺)應用在鋰電池電極黏著劑以及膠態高分子電解質 Poly(N-vinyl formamide) Used as a Binder and Gel Type Polymer Electrolyte in Lithium Battery |
| 指導教授: |
侯聖澍
Hou, Sheng-Shu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | 聚(N-乙烯甲醯胺) 、黏著劑 、膠態電解質 、鋰電池 |
| 外文關鍵詞: | PNVF, binder, electrolyte, water in salt, lithium battery |
| 相關次數: | 點閱:43 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究分兩部分第一部分為利用聚(N-乙烯甲醯胺)做為非水溶液電池正極高分子黏著劑。由於PNVF可溶於水的特性,因此可利用水作為正極漿料的分散劑,達到綠色環保的極片製成,並且PNVF可以降低電荷轉移阻抗使極化現象降低、PNVF為非結晶高分子不會阻鋰離子傳導、比PVDF還低的有機溶液溶脹特性使電極於電解液中不會因溶脹產生結構壞,除上述之外PNVF還有擁較PVDF強的附著力,能降低生產時的不良率並可製作出較厚的 電極與增加循環穩定性,這些特點使PNVF具有取代商用PVDF的潛力。本論文將利用電化學的方式來探討PNVF其降低極化現象的因素。
第二部分為含聚N-乙烯甲醯胺之水溶液膠態電解質。傳統水溶液電池雖然有導電度比有機溶液高、安全、對環境友善以及降低成本等優點,但缺點是電化學穩定窗口太過狹窄,導致工作電壓太低。本論文藉由將"polymer in salt"和"water in salt"的概念結合在一起,形成一種以水作為塑化劑之膠態電解質,其具有類似rubber type的物性,並能增加電化學穩定窗口,以及在室溫下充放電的特性。
The first part of this study is the use of poly(N-vinyl formamide) as a binder for non-aqueous lithium ion batteries. We can use water instead of organic solvents to disperse the slurry and thus provide a green battery cell assembly process. PNVF can reduce the charge transfer impedance to reduce polarization phenomenon, and the electrochemical experiments show that the internal resistance drop of PNVF system is smaller than the PVDF system (PNVF system: 1 C-rate,≒0.1 V vs Li/Li+). When 5 C-rate, we can have 100 mAh/g capacity and 3.3 V vs Li/Li+ discharge voltage. PNVF is a noncrystalline polymer and therefore does not block ion transport. In addition to the above, PNVF has a stronger adhesion force than PVDF (PNVF system: 2.5 N, PVDF: 0.8 N), which can increase cycle stability. These characteristics make PNVF have the potential to replace commercial PVDF.
The second part is poly(N-vinyl formamide) used as a gel type aqueous electrolyte in aqueous lithium ion batteries. Although traditional aqueous batteries have the advantages of higher conductivity, safety, environmental friendliness and lower cost than organic solutions, their disadvantages are the electrochemical stability window is too narrow, which cause the low operating voltage. In this paper, by combining the concepts of "polymer in salt" and "water in salt", a gel type electrolyte with water as plasticizer is formed, which has similar properties to rubber type. It can increase the electrochemical stability window, and the batteries can charge and discharge at room temperature.
1. Oakes, M. J., A Brief History of Batteries and stored energy. 2006.
2. Scrosati, B., History of lithium batteries. Journal of Solid State Electrochemistry 2011, 15 (7-8), 1623-1630.
3. BOBBY History Of Batteries: A Timeline. https://www.upsbatterycenter.com/blog/history-batteries-timeline/.
4. Ozawa, K., Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes: the LiCoO2/C system. Solid State Ionics 1994, 69 (3), 212-221.
5. Lin, D.; Liu, Y.; Cui, Y., Reviving the lithium metal anode for high-energy batteries. Nature Nanotechnology 2017, 12, 194.
6. Tarascon, J. M.; Armand, M., Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359.
7. Dunn, B.; Kamath, H.; Tarascon, J.-M., Electrical Energy Storage for the Grid: A Battery of Choices. Science 2011, 334 (6058), 928-935.
8. Lee, H.; Yanilmaz, M.; Toprakci, O.; Fu, K.; Zhang, X., A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy Environ. Sci. 2014, 7 (12), 3857-3886.
9. Park, J.-K., Principles and Applications of Lithium Secondary Batteries. Wiley-VCH, Weinheim: Germany, 2012.
10. Scrosati, B., Advances in Lithium-Ion Batteries. Springer Science & Business Media: New York,USA, 2002.
11. Hu, Y., Novel room temperature molten salt electrolyte based on LiTFSI and acetamide for lithium batteries. Electrochemistry Communications 2004, 6 (1), 28-32.
12. M. Yoshio, R. J. B., and A. Kozawa, Lithium-Ion Batteries. Springer: New York, USA, 2009.
13. Fergus, J. W., Ceramic and polymeric solid electrolytes for lithium-ion batteries. Journal of Power Sources 2010, 195 (15), 4554-4569.
14. 韓虹羽, 明博, 鋰離子電池正極材料進展 Chemical Production and Technology 2012, 19 (4), 24-33.
15. Ueda, A., Ohzuku, T., Solid‐State Redox Reactions of LiCoO2 (R3̅m) for 4 Volt Secondary Lithium Cells. J. Electrochem. Soc 1994, 141 (11), 2972-2977.
16. Thomas, M. G. S. R.; Bruce, P. G.; Goodenough, J. B., Lithium mobility in the layered oxide Li1−xCoO2. Solid State Ionics 1985, 17 (1), 13-19.
17. Birkl, C. R.; Roberts, M. R.; McTurk, E.; Bruce, P. G.; Howey, D. A., Degradation diagnostics for lithium ion cells. Journal of Power Sources 2017, 341, 373-386.
18. Vetter, J.; Novák, P.; Wagner, M. R.; Veit, C.; Möller, K. C.; Besenhard, J. O.; Winter, M.; Wohlfahrt-Mehrens, M.; Vogler, C.; Hammouche, A., Ageing mechanisms in lithium-ion batteries. Journal of Power Sources 2005, 147 (1), 269-281.
19. Chou, S.-L.; Pan, Y.; Wang, J.-Z.; Liu, H.-K.; Dou, S., Small things make a big difference: Binder effects on the performance of Li and Na batteries. 2014; Vol. 16.
20. Li, J.; Armstrong, B. L.; Kiggans, J.; Daniel, C.; Wood, D. L., Optimization of LiFePO4 Nanoparticle Suspensions with Polyethyleneimine for Aqueous Processing. Langmuir 2012, 28 (8), 3783-3790.
21. Zaghib, K.; Charest, P.; Dontigny, M.; Petitclerc, M.; Guerfi, A., Water Soluble Binder for LiFePO4/Polymer/ Carbon HQ technology. 2007; Vol. 3., p 19-26
22. Zheng, H.; Yang, R.; Liu, G.; Song, X.; Battaglia, V. S., Cooperation between Active Material, Polymeric Binder and Conductive Carbon Additive in Lithium Ion Battery Cathode. The Journal of Physical Chemistry C 2012, 116 (7), 4875-4882.
23. Liu, G.; Zheng, H.; Song, X.; Battaglia, V. S., Particles and Polymer Binder Interaction: A Controlling Factor in Lithium-Ion Electrode Performance. Journal of the Electrochemical Society 2012, 159 (3), A214-A221.
24. Zhang, Z.; Zeng, T.; Lai, Y.; Jia, M.; Li, J., A comparative study of different binders and their effects on electrochemical properties of LiMn2O4 cathode in lithium ion batteries. Journal of Power Sources 2014, 247, 1-8.
25. Guerfi, A.; Kaneko, M.; Petitclerc, M.; Mori, M.; Zaghib, K., LiFePO4 water-soluble binder electrode for Li-ion batteries. Journal of Power Sources 2007, 163 (2), 1047-1052.
26. Zhang, Z.; Zeng, T.; Qu, C.; Lu, H.; Jia, M.; Lai, Y.; Li, J., Cycle performance improvement of LiFePO4 cathode with polyacrylic acid as binder. Electrochimica Acta 2012, 80, 440-444.
27. Nakamura, K.; Hatakeyama, T.; Hatakeyama, H., Heat Capacities of Carboxymethylcellulose-Nonfreezing Water Systems at around Glass Transition Temperature. KOBUNSHI RONBUNSHU 1996, 53 (12), 860-865.
28. Lee, J.-H.; Paik, U.; Hackley, V.; Choi, Y.-M., Effect of Carboxymethyl Cellulose on Aqueous Processing of Natural Graphite Negative Electrodes and their Electrochemical Performance for Lithium Batteries. 2005; Vol. 152, p A1763-A1769.
29. Wang, H.; Umeno, T.; Mizuma, K.; Yoshio, M., Highly conductive bridges between graphite spheres to improve the cycle performance of a graphite anode in lithium-ion batteries. Journal of Power Sources 2008, 175 (2), 886-890.
30. F. Lux, S.; Schappacher, F.; Balducci, A.; Passerini, S.; Winter, M., Low Cost, Environmentally Benign Binders for Lithium-Ion Batteries. 2010; Vol. 157, p A320-A325.
31. Buqa, H.; Holzapfel, M.; Krumeich, F.; Veit, C.; Novák, P., Study of styrene butadiene rubber and sodium methyl cellulose as binder for negative electrodes in lithium-ion batteries. Journal of Power Sources 2006, 161 (1), 617-622.
32. Weerakkody, R.; Labbett, D.; Cheng, L.; L. Kosaraju, S., Effect of Physicochemical Modifications on Antioxidant Activity of Water-soluble Chitosan. 2011; Vol. 6, p 127-132.
33. Sun, M.; Zhong, H.; Jiao, S.; Shao, H.; Zhang, L., Investigation on Carboxymethyl Chitosan as New Water Soluble Binder for LiFePO4 Cathode in Li-Ion Batteries. Electrochimica Acta 2014, 127, 239-244.
34. Chai, L.; Qu, Q.; Zhang, L.; Shen, M.; Zhang, L.; Zheng, H., Chitosan, a new and environmental benign electrode binder for use with graphite anode in lithium-ion batteries. Electrochimica Acta 2013, 105, 378-383.
35. Zhong, H.; Zhou, P.; Yue, L. U.; Tang, D.; Zhang, L., Micro/nano-structured SnS2 negative electrodes using chitosan derivatives as water-soluble binders for Li-ion batteries. 2014; Vol. 44.
36. Yue, L.; Zhang, L.; Zhong, H., Carboxymethyl chitosan: A new water soluble binder for Si anode of Li-ion batteries. Journal of Power Sources 2014, 247, 327-331.
37. He, J.; Zhong, H.; Wang, J.; Zhang, L., Investigation on xanthan gum as novel water soluble binder for LiFePO4 cathode in lithium-ion batteries. Journal of Alloys and Compounds 2017, 714, 409-418.
38. Cai, Z. P.; Liang, Y.; Li, W. S.; Xing, L. D.; Liao, Y. H., Preparation and performances of LiFePO4 cathode in aqueous solvent with polyacrylic acid as a binder. Journal of Power Sources 2009, 189 (1), 547-551.
39. Li, J.; Le, D.-B.; Ferguson, P. P.; Dahn, J. R., Lithium polyacrylate as a binder for tin–cobalt–carbon negative electrodes in lithium-ion batteries. Electrochimica Acta 2010, 55 (8), 2991-2995.
40. Komaba, S.; Ozeki, T.; Yabuuchi, N.; Shimomura, K., Polyacrylate as Functional Binder for Silicon and Graphite Composite Electrode in Lithium-Ion Batteries. Electrochemistry 2011, 79 (1), 6-9.
41. Komaba, S.; Shimomura, K.; Yabuuchi, N.; Ozeki, T.; Yui, H.; Konno, K., Study on Polymer Binders for High-Capacity SiO Negative Electrode of Li-Ion Batteries. The Journal of Physical Chemistry C 2011, 115 (27), 13487-13495.
42. Magasinski, A.; Zdyrko, B.; Kovalenko, I.; Hertzberg, B.; Burtovyy, R.; Huebner, C. F.; Fuller, T. F.; Luzinov, I.; Yushin, G., Toward Efficient Binders for Li-Ion Battery Si-Based Anodes: Polyacrylic Acid. ACS Applied Materials & Interfaces 2010, 2 (11), 3004-3010.
43. Komaba, S.; Okushi, K.; Ozeki, T.; Yui, H.; Katayama, Y.; Miura, T.; Saito, T.; Groult, H., Polyacrylate Modifier for Graphite Anode of Lithium-Ion Batteries. 2009; Vol. 12.
44. Komaba, S.; Yabuuchi, N.; Ozeki, T.; Okushi, K.; Yui, H.; Konno, K.; Katayama, Y.; Miura, T., Functional binders for reversible lithium intercalation into graphite in propylene carbonate and ionic liquid media. Journal of Power Sources 2010, 195 (18), 6069-6074.
45. Ui, K.; Kikuchi, S.; Mikami, F.; Kadoma, Y.; Kumagai, N., Improvement of electrochemical characteristics of natural graphite negative electrode coated with polyacrylic acid in pure propylene carbonate electrolyte. Journal of Power Sources 2007, 173 (1), 518-521.
46. Ui, K.; Towada, J.; Agatsuma, S.; Kumagai, N.; Yamamoto, K.; Haruyama, H.; Takeuchi, K.; Koura, N., Influence of the binder types on the electrochemical characteristics of natural graphite electrode in room-temperature ionic liquid. Journal of Power Sources 2011, 196 (8), 3900-3905.
47. Komaba, S.; Ozeki, T.; Okushi, K., Functional interface of polymer modified graphite anode. Journal of Power Sources 2009, 189 (1), 197-203.
48. Nguyen, V. H.; Wang, W. L.; Jin, E. M.; Gu, H.-B., Impacts of different polymer binders on electrochemical properties of LiFePO4 cathode. Applied Surface Science 2013, 282, 444-449.
49. Bard, A. J.; Faulkner, L. R., Electrochemical Methods Fundamentals and Applications. 2001.
50. Andre, D.; Meiler, M.; Steiner, K.; Wimmer, C.; Soczka-Guth, T.; Sauer, D. U., Characterization of high-power lithium-ion batteries by electrochemical impedance spectroscopy. I. Experimental investigation. Journal of Power Sources 2011, 196 (12), 5334-5341.
51. Andersson, A. S.; Thomas, J. O., The source of first-cycle capacity loss in LiFePO4. Journal of Power Sources 2001, 97-98, 498-502.
52. Kufian, m. z.; Majid, S. R., Performance of lithium-ion cells using 1 M LiPF6 in EC/DEC (v/v=1/2) electrolyte with ethyl propionate additive. 2010; Vol. 16, p 409-416.
53. Beck, F.; Rüetschi, P., Rechargeable batteries with aqueous electrolytes. Electrochimica Acta 2000, 45 (15), 2467-2482.
54. Alias, N.; Mohamad, A. A., Advances of aqueous rechargeable lithium-ion battery: A review. Journal of Power Sources 2015, 274, 237-251.
55. Li, W.; Dahn, J. R.; Wainwright, D. S., Rechargeable Lithium Batteries with Aqueous Electrolytes. Science 1994, 264 (5162), 1115-1118.
56. Wu, B.; Wang, L.; Li, Z.; Zhao, M.; Chen, K.; Liu, S.; Pu, Y.; Li, J., Performance of “Polymer-in-Salt” Electrolyte PAN-LiTFSI Enhanced by Graphene Oxide Filler. 2016; Vol. 163, p A2248-A2252.
57. Liu, X.-H.; Saito, T.; Doi, T.; Okada, S.; Yamaki, J.-i., Electrochemical properties of rechargeable aqueous lithium ion batteries with an olivine-type cathode and a Nasicon-type anode. Journal of Power Sources 2009, 189 (1), 706-710.
58. Suo, L.; Borodin, O.; Sun, W.; Fan, X.; Yang, C.; Wang, F.; Gao, T.; Ma, Z.; Schroeder, M.; von Cresce, A.; Russell, S. M.; Armand, M.; Angell, A.; Xu, K.; Wang, C., Advanced High-Voltage Aqueous Lithium-Ion Battery Enabled by "Water-in-Bisalt" Electrolyte. Angew Chem Int Ed Engl 2016, 55 (25), 7136-41.
59. Suo, L.; Borodin, O.; Gao, T.; Olguin, M.; Ho, J.; Fan, X.; Luo, C.; Wang, C.; Xu, K., “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 2015, 350 (6263), 938-943.
60. Yang, C.; Suo, L.; Borodin, O.; Wang, F.; Sun, W.; Gao, T.; Fan, X.; Hou, S.; Ma, Z.; Amine, K.; Xu, K.; Wang, C., Unique aqueous Li-ion/sulfur chemistry with high energy density and reversibility. Proc Natl Acad Sci U S A 2017, 114 (24), 6197-6202.
61. Sun, W.; Suo, L.; Wang, F.; Eidson, N.; Yang, C.; Han, F.; Ma, Z.; Gao, T.; Zhu, M.; Wang, C., “Water-in-Salt” electrolyte enabled LiMn2O4/TiS2 Lithium-ion batteries. Electrochemistry Communications 2017, 82, 71-74.
62. Chang, Z.; Li, C.; Wang, Y.; Chen, B.; Fu, L.; Zhu, Y.; Zhang, L.; Wu, Y.; Huang, W., A lithium ion battery using an aqueous electrolyte solution. Sci Rep 2016, 6, 28421.
63. Wang, X.; Hou, Y.; Zhu, Y.; Wu, Y.; Holze, R., An aqueous rechargeable lithium battery using coated Li metal as anode. Sci Rep 2013, 3, 1401.
64. Yang, C.; Chen, J.; Qing, T.; Fan, X.; Sun, W.; von Cresce, A.; Ding, M. S.; Borodin, O.; Vatamanu, J.; Schroeder, M. A.; Eidson, N.; Wang, C.; Xu, K., 4.0 V Aqueous Li-Ion Batteries. Joule 2017, 1 (1), 122-132.
65. Hou, Z.; Zhang, X.; Li, X.; Zhu, Y.; Liang, J.; Qian, Y., Surfactant widens the electrochemical window of an aqueous electrolyte for better rechargeable aqueous sodium/zinc battery. Journal of Materials Chemistry A 2017, 5 (2), 730-738.
66. Wang, Y.; Yi, J.; Xia, Y., Recent Progress in Aqueous Lithium-Ion Batteries. Advanced Energy Materials 2012, 2 (7), 830-840.
67. Suo, L.; Borodin, O.; Gao, T.; Olguin, M.; Ho, J.; Fan, X.; Luo, C.; Wang, C.; Xu, K., "Water-in-salt" electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 2015, 350 (6263), 938-43.
68. Yamada, Y.; Usui, K.; Sodeyama, K.; Ko, S.; Tateyama, Y.; Yamada, A., Hydrate-melt electrolytes for high-energy-density aqueous batteries. Nature Energy 2016, 1 (10).
69. Kuhnel, R. S.; Reber, D.; Remhof, A.; Figi, R.; Bleiner, D.; Battaglia, C., "Water-in-salt" electrolytes enable the use of cost-effective aluminum current collectors for aqueous high-voltage batteries. Chem Commun (Camb) 2016, 52 (68), 10435-8.