| 研究生: |
林仲鐽 Lin, Chung-Ta |
|---|---|
| 論文名稱: |
氣體輔助霧化法在金屬粉末噴霧製程之研究 Investigation of Air-assist Atomization on Production of Metal Powders |
| 指導教授: |
王覺寬
Wang, Muh-Rong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 110 |
| 中文關鍵詞: | 氣霧法 、數值模擬 、金屬粉末製程 、粒徑分佈 |
| 外文關鍵詞: | Gas atomization, Simulation, Powder production, Particle size |
| 相關次數: | 點閱:93 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氣體霧化法為工業製造金屬粉末之核心技術,傳統氣霧法製程需要較高之氣體操作壓力(>1MPa),導致設備和氣體消耗量方面花費成本甚多。本研究主要分為三部分來探討氣體輔助霧化器之霧化特性。第一部分先以數值方法模擬噴嘴之二維流場,以建立噴嘴在不同壓力下之流場特性。第二部分進行冷模實驗,以水作為霧化介質,探討不同之霧化氣體壓力、氣液質量比以及輸送管孔徑對其霧化特性之影響,並驗證數值模擬之結果。第三部分進行金屬霧化實驗,以鉛錫合金Sn63Pb37為霧化材料,研究霧化氣體壓力及金屬熔湯溫度,對金屬粉末粒徑之影響,並從金屬粉末SEM照像圖印證粉末粒徑及觀察粉末之表面特性。
噴嘴流場數值模擬結果顯示,於較低霧化氣體壓力操作條件下,透過噴嘴漸縮漸擴之結構設計可令氣流速度達到超音速。當氣體壓力從1.0kg⁄cm^2 增加至3.5kg⁄cm^2 時,產生之最大氣流速度由235.9 m⁄s增加至415.6( m)⁄s。結果亦顯示此噴嘴結構可產生負壓狀態,其負壓值由-0.34kg⁄cm^2 變化至-0.28kg⁄cm^2 ,此乃本研究噴嘴操作之重要條件。冷模實驗結果顯示,隨霧化氣體操作壓力遞增,噴霧之平均粒徑有降低之趨勢。當霧化氣體壓力為3.5kg⁄cm^2 及輸送管之孔徑為2.0mm時,其Dv50可降低至6.88μm。金屬粉末實驗結果顯示,當金屬熔湯溫度為450℃時,氣體壓力從1.0kg⁄cm^2 增加至3.5kg⁄cm^2 ,則金屬粉末之Dv50從65.68μm降低到14.30μm。因此,利用氣體輔助霧化法製程,可以在低壓條件下製造微細之金屬粉末,是具有最佳效益之製造方法。
Gas atomization is capable for metal powder production for industrial application. However, the conventional gas atomizers require higher gas operating pressure (> 1 MPa), which results in more cost in facilities and gas consumption. In the present study, an air-assist atomizer with low gas pressure was investigated for metal powder production. The gas was accelerated to supersonic speed through the convergent–divergent geometry inside the nozzle and impinged on the liquid. In order to investigate the performance this air-assist nozzle, three steps for analyzing the nozzle behavior were performed. First, the gas flow behavior was analyzed by simulation, and it was discussed that the field characteristics were produced by nozzle under various pressure. Second, it was conducted by cold-model experiments, and we investigated the influence of atomization characteristics under various condition, i.e., gas pressure, gas-to-liquid mass ratio and the inner diameter of the delivery tube. Besides, it was showed the comparison of the delivery tube tip pressure for experimental and simulate result. Finally, it was conducted by atomization on the experiment of metal powders. The experimental parameters with Sn63Pb37 metal powders included gas pressure and molten metal temperature. For characterization the metal powders was analyzed by scanning electron microscopy.
From the results of the simulation, it can be seen that air is accelerated to supersonic speed through the convergent –divergent geometry of the nozzle even at low gas pressure. The maximum speed was increased from 235.9 m/s to 415.6 m/s with the gas pressure increasing from 1.0 kg/cm2 to 3.5 kg/cm2. In cold-model experiments, the results showed that the particle diameter of the water decreased by further increasing atomising pressure. The minimum volume mean diameter (Dv50, μm) can be achieved at 6.88μm when gas pressure was 3.5 kg/cm2 and inner diameter of the delivery tube was 2.0 mm. In metal powder experiments, the powder size was decreased from 65.68μm to 14.3μm when the gas pressure increasing from 1.0 to 3.5 kg/cm2 at higher melt temperature 450 ℃. As a result, the optimum efficiency for the production of fine metal powders can be produced by the air-assist atomizer.
[1]Zhang Shuguang, “A Novel Ultrasonic Atomization Process for Producing Spherical Metal Powder”, ACTA METALLURGICA SINICA, Vol.38, No.8, pp.888-892, 2002
[2]徐仁輝,“粉末冶金概論",新文京開發出版有限公司,第三章,民國91年9月。
[3]Castleman, R. A., Jr., “The Mechanism of the Atomization of Liquids,” Burean of Standards Journal of Research, Vol.6, pp.369-376, 1930.
[4]Lefebvre, A. H., “Gas Turbine Combustion,” Chapter 10, Hemisphere Publishing Corporation, New York, 1983.
[5]Dombrowski, N. and Johns, W. R., “The Aerodynamic Instability and Disintegration of Viscous Liquid Sheets,” Chem. Eng. Sci., Vol.18, pp.203-214, 1963.
[6]Stapper, B. E., Sowa, W. A. and Samuelsen, G. S., ”An Experimental Study of the Effects of Liquid Properties on the Breakup of a Two-dimensional Liquid Sheet,” ASME, Journal of Engineering for Gas Turbines and Power, Vol.114, pp.39-45, 1992.
[7]Fraser, R. P., ”Liquid Fuel Atomization,” Sixth Symposium(International) on Combustion, Rein-hold, New York, pp.687-701,1957.
[8]Simmons, H. C., “The Atomization of Liquid, Principles and Methods,” Parker Hannifin Report, No.7901/2-0, 1979.
[9]Lefebvre, A. H., ”Atomization and Spary,” Hemisphere Publishing Corporation, New York, pp.1-25 , 1989。
[10]Cubberly, and William, H. Metal Handbook. ninth ed., Vol. 7, Powder Metallurgy, American Society for Metal, 1984.
[11]Tallmadge, J. A., “Powder Production by Gas and Water Atomization of Liquid Metals,” Powder Metallurgy Processing, Kuhn, H. S. and Lawley, A. (eds.), Academic Press, New York, NY, pp.1-32. 1978.
[12]Tamura, K. and Takeda, T., “Production of Copper Powder by Atomization,” Trans. Nat. Res. Inst. Metals (Japan), vol. =5, pp.252-256, 1963.
[13]OUYANG Hong-wu, CHEN Xin and HUANG Bai-yun, “Influence of melt superheat on breakup process of close-coupled gas atomization,” Trans. Nonferrous Met. SOC. China, Vol.17, pp.967-973, 2007.
[14]Nukiyama, S. and Tanasawa, Y., "Experiments on Atomization of Liquids in an Airstream," Transaction of JSME, Vol. 5, No.18, pp.68-75, 1939.
[15]Gretzinger, J. and Marshall, W.R. Jr., "Characteristics of Pneumatic Atomization," AIChE Journal, Vol.7, No.2, pp.312-318, Jun. 1961.
[16]Kim, K.Y., and Marshall, W.R. Jr., "Drop-Size Distributions from Pneumatic Atomizers," AIChE Journal, Vol.17, No.3, pp.575-584, May 1971.
[17]Tate, R.W., "Droplet Size Distribution Data for Internal-Mixing Pneumatic Atomizers," Proceeding of the 3rd ICLASS," pp.IIC/1/1-13, 1985.
[18]Rizkalla, A. A. and Lefebvre A.H., "Influence of Liquid Properties on Airblast Atomizer Spray Characteristics,” J. Eng. Power, pp.173-179, April 1975.
[19]Rizkalla, A. A. and Lefebvre A.H., “The Influence of Air and Liquid Properties on Airblast Atomization,” J. Fluids Eng., Vol.97, pp.316-320, 1975.
[20]Rizk, N. K. and Lefebvre, A. H., ”Influence of Atomizer DesignFeature on Mean Drop Size,” AIAA Journal, Vol.21, No.8, pp.1139-1142, 1983.
[21]Beck, J., Lefebvre, A. H. and Koblish, T., ”Air Blast Atomization at Conditions of Low Air Velocity,” Paper No AIAA- 89-0217, 1989.
[22]Beck, J. E., Lefebvre A. H. and Koblish, T. R., “Liquid Sheet Disintegration by Impinging Air Streams,”Atomization and Sprays, Vol.1, No. 2, pp.155-170, 1991.
[23]Beck, J. E. and Lefebvre A. H., "Airblast Atomization at Conditions of Low Air Velocity," J. Propulsion, Vol.7, NO.2, March-April, 1991.
[24]Aligner, M. and Wittig, S., "Swirl and Counter Swirl Effects in Prefilming Airblast Atomization", Trans. ASME, J. Eng. Power, Vol. 102, pp.706-710, 1980.
[25]許耀仁,“氣衝式平面噴嘴液膜霧化特性之研究",國立成功大學航太所碩士論文, 1993。
[26]Sattelmayer, T. and Witting, S., ”Internal Flow Effects in Prefilming Airblast Atomizers Mechanisms of Atomization and Droplet Spectra,” ASME Journal of Engineering for Gas Turbine and Power, Vol.108, pp.465-472, 1986.
[27]Rizk, N.K. and Lefebvre, A.H., “Spray Characteristics of Plain-jet Airblast Atomizer,” Transaction of The ASME vol. 106, July 1984.
[28]Kevin, S. Chen and Lefebvre, A. H., "Spray Cone Angle of Effervescent Atomizers," Atomization and Sprays, vol. 4, pp.291-301, 1994.
[29]楊坤和,“研究型氣助式噴嘴之噴霧特性研究",國立成功大學航太所碩士論文,1992。
[30]徐明生,“雙流體式平面噴嘴霧化特性之研究",國立成功大學航太所碩士論文,1995。
[31]王承光,“氣助式及氣衝式平面噴嘴中霧化空氣對噴霧特性之研究",國立成功大學航太所碩士論文,1996。
[32]Mates, S. P., and Settles, G. S., "High-Speed Imaging of Liquid Metal Atomization by Two Different Close-Coupled Gas Atomization Nozzles," presented at the 1996 World Congress on Powder Metallurgy and Particulate Materials, Washington DC,June16-21, 1996.
[33]Anderson, I. E., and Terpstra, R. L., “Progress toward gas atomization processing with increased uniformity and control,” Materials Science and Engineering:A, Vol.326, Issue 1, pp. 101-109, Mar. 15, 2002.
[34]Ünal, R., “The influence of the pressure formation at the tip of the melt delivery tube on tin powder size and gas/melt ratio in gas atomization method,” Journal of Materials Processing Technology 180, pp. 291–295, 2006.
[35]康煜昌,“平面型液態金屬霧化器之霧化特性研究",國立成功大學航太所碩士論文,1998。
[36]楊舒然,“強制式液態金屬霧化器之控制參數研究",國立成功大學航太所碩士論文,1999。
[37]楊哲睿,“液態金屬在噴嘴不同長寬比下之霧化特性",國立成功大學航太所碩士論文,2002。
[38]郭振展,“液態金屬在噴嘴低長寬比下之霧化特性",國立成功大學航太所碩士論文,2003。
[39]陳哲萍,“超微粒錫粉銲料之噴霧製造研究",國立成功大學航太所碩士論文,2004。
[40]陳品任,“金屬噴霧在衝擊氣流作用下之霧化特性",國立成功大學航太所碩士論文,2005。
[41]許明貴,“氣體對衝機制對複合金屬粉末噴霧製程之效應",國立成功大學航太所碩士論文,2009。
[42]Ünal, A., “Effect of Processing Variables on Particle Size in Gas Atomization of Rapidly Solidified Aluminium Powders,” Materials Science and Technology, Vol.3, pp.1029-1039, 1987.
[43]Sedat Őzbilen, “Influence of atomizing gas on particle shape of Al and Mg powder,” Powder Technology. , Vol.102, Issue.2, Mar. 3, pp. 109-119, 1999.
[44]Zeoli N., and Gu S., “Numerical modelling of droplet break-up for gas atomization,” Computational Materials Science, Vol.38, pp.282–292, 2006
[45]Jeyakumar, M., Gupta, G.S. and Subodh Kumar, “Modeling of gas flow inside and outside the nozzle used in spray deposition,"Journal of materials processing technology, Vol. 203, pp. 471–479, 2008
[46]Allimant A., Planche M.P., Bailly Y., Dembinski L. and Coddet C., “Progress in gas atomization of liquid metals by means of a De Laval nozzle,” Powder Technology, PTEC-07221, 2008
[47]Aydin, O. and Ünal, R., “Experimental and numerical modeling of the gas atomization nozzle for gas flow behavior,” Computer and Fluids, Vol. 42, pp.37-43, 2011.
[48]Ünal, R., “Investigation on metal powder production efficiency of new convergent divergent nozzle in close coupled gas atomisation,” Powder Metallurgy, Vol.50, No.4, 2007.
[49]Chengsong Cui, Fuyang Cao, Qingchun Li, “Formation mechanism of the pressure zone at the tip of the melt delivery tube during the spray forming process,” Journal of Materials Processing Technology, Vol. 137 pp. 5–9, 2003.
[50]王覺寬,康煜昌,徐明生,楊舒然,”氣助式平面型液態金屬霧化器特性研究,” 40th Conference on Aero. and Astro. Of ROC, Taichung, Taiwan, ROC, Dec, 1998.
[51]FLUENT 6.3 User's Guide, September, 2006.
[52]于勇,張俊明,姜連田,“FLUENT入門語進階教程",北京理工大學出版社,民國97年9月。
[53]Ünal, R., “Improvements to close coupled gas atomisation nozzle for fine powder production,” Powder Metallurgy, Vol.50, No.1, 2007.