| 研究生: |
莊琮貿 Chuang, Tsung-Mao |
|---|---|
| 論文名稱: |
Sn-xNi和SAC105合金應用於光伏模組之界面微觀組織特性及通電機制研究 Interfacial Microstructures and Electrical Mechanism of Sn-xNi and SAC105 Alloys for Photovoltaic Module |
| 指導教授: |
洪飛義
Hung, Fei-Yi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | Sn-Ni 、Sn-Ag-Cu 、光伏模組 、介金屬化合物 |
| 外文關鍵詞: | Sn-Ni, Sn-Ag-Cu, Photovoltaic module, IMC |
| 相關次數: | 點閱:190 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗選用Sn-xNi (x=0.2, 0.5, 1 wt.%)和SAC105四種不同無鉛銲錫合金應用於光伏模組上。實驗分為兩部份,首先為銲錫合金顯微組織觀察、熔點量測和拉伸性質分析;第二部份為銲錫合金應用於光伏模組,以剝離力測試和回銲界面微觀組織觀察,進而評估銲錫合金於光伏模組的適用性。並以高電流加速實驗測試,藉以模擬實際應用界面IMC變化對光伏模組體電組之影響。
由微觀組織觀察和拉伸測試發現,Sn-1Ni銲錫合金具有較密且針棒狀第二相,使得其YS、UTS和TE均比SAC105銲錫合金高。並藉由熔點量測評估應用於光伏模組的回銲溫度,再以剝離力測試評估光伏模組接合強度。以相同條件回銲後,因Sn-1Ni/Ag界面之Ag濃度梯度比SAC105f/Ag界面大,導致其剩餘銀膠層較薄 (7.4μm<8.6μm)。回銲後Sn-1Ni/Cu界面形成厚 (2.2μm)且高電阻的(Cu,Ni)6Sn5,故Sn-1Ni光伏模組體電組大於SAC105f (0.030Ω>0.028Ω)。經高電流通電72小時後, Sn-1Ni/Cu界面的(Cu,Ni)6Sn5可有效減緩Cu3Sn的生成及IMC的成長 (2.3μm),但所有純銀層皆以消耗完畢;SAC105f/Cu界面形成Cu6Sn5 (2.0μm)和Cu3Sn (2.1μm)的IMC,雖然於回銲時可有效抑制銀膠層的消耗,但長時間通電後所有純銀層皆轉變成Ag3Sn。然而Sn-1Ni光伏模組雖然可以抑制IMC成長,但在浸鍍及回銲製程即形成高電阻IMC界面,故其體電組仍較高。因此選擇低Ni含量銲錫合金 (Sn-0.2Ni)在長時間通電後,可抑制Cu3Sn相的生成且形成較薄的IMC界面 (由熱浸鍍Solder/Cu界面解析中,可發現Sn-0.2Ni具有較薄 (1.7μm)的IMC層)。故Sn-0.2Ni為最低體電組的光伏模組,其具有低成本和市場應用潛力。
The lead-free solders of Sn-1Ag-0.5Cu (SAC105) and Sn-xNi (x = 0.2, 0.5, 1 wt.%) were used in photovoltaic (PV) ribbons in this study that included two parts. First, the properties of solders contained microstructure, melting point and mechanical properties. Second part, the applicability of solders in PV module assessed their applicability by peeling test and interface microstructure. In order to accelerate experiment with high current density, which simulated the actual application how the interface transition of IMC affected the volume resistance of PV modules.
After the electric test with high current density for 72 hours, all of silver layer transformed into Ag3Sn in positive zone. The formation of (Cu,Ni)6Sn5 at Sn-1Ni/Cu interface was prevented the formation of Cu3Sn and retarded the growth of IMC during the electric test. Although the PV ribbon of Sn-1Ni could inhibit the growth of IMC, but the thickness of IMC formed was larger during dipping and reflowing process, so the PV module of Sn-1Ni was still high volume resistance after electric test for 72 hours. Therefore, the addition of low Ni content PV ribbons could inhibit the generation of Cu3Sn phase and the thinness of IMC formed at Solder/Cu interface, so the photovoltaic module of Sn-0.2Ni had the lowest volume resistance than other PV modules. In terms of cost and application considerations for the PV ribbons of Sn-0.2Ni had potential.
Keywords: Sn-Ni, Sn-Ag-Cu, Photovoltaic module, IMC
1. 王啟秀,孔祥科,左玉婷,「全球能源產業趨勢研究-以台灣太陽能光電產業為例」,中華管理評論國際學報,第11卷,第3期,頁1—46,民國97年8月。
2. M. S. Kim, “Understanding Organic Photovoltaic Cells: Electrode, Nanostructure, Reliability, and Performance”, ProQuest, pp. 1-5. (2009)
3. 翁敏航,「太陽能電池-原理、元件、材料、製程與檢驗技術」,東華書局,民國99年。
4. K. J. Puttlitz, and K. A. Stalter, “Handbook of Lead-Free Solder Technology for Microelectronic Assemblies”, CRC Press, pp. 1-8. (2004)
5. E. V. Rozhitsina, S. Gruner, I. Kaban, W. Hoyer, V. E. Sidorov, and P. S. Popel’, “Dynamic Viscosities of Pure Tin and Sn-Ag, Sn-Cu, and Sn-Ag-Cu Eutectic Melts”, Russian Metallurgy (Metally), Vol. 2011, pp. 118-121. (2011)
6. G. Zeng, S. Xue, L. Zhang, L. Gao, W. Dai, and J. Luo, “A Review on the Interfacial Intermetallic Compounds between Sn-Ag-Cu Based Solders and Substrates”, Journal of Materials Science: Materials in Electronics, Vol. 21, pp. 421-440. (2010)
7. W. M. Tang, A. Q. He, Q Liu, and D. G. Ivey, “Solid State Interfacial Reactions in Electrodeposited Cu/Sn Couples”, Transactions of Nonferrous Metals Society of China, Vol. 20, pp. 90-96. (2010)
8. T. L. Yang, K. Y. Huang, S. Yan, H. H. Hsieh, and C. R. Kao “Growth Kinetics of Ag3Sn in Silicon Solar Cells with a Sintered Ag Metallization Layer”, Solar Energy Materials & Solar Cells, Vol. 123, pp. 139-143. (2014)
9. P. Borgesen, L. Yin, and P. Kondos, “Assessing the Risk of Kirkendall Voiding in Cu3Sn”, Microelectronics Reliability, Vol. 51, pp. 837-846. (2011)
10. K. J. Chen, F. Y. Hung, T. S. Lui, L. H. Chen, D. W. Qiu, and T. L. Chou, “Microstructure and Electrical Mechanism of Sn-xAg-Cu PV-ribbon for Solar Cells”, Microelectronic Engineering, Vol. 116, pp. 33-39. (2014)
11. F. Gao, T. Takemoto, and H. Nishikawa, “Effects of Co and Ni Addition on Reactive Diffusion between Sn-3.5Ag Solder and Cu during Soldering and Annealing”, Materials Science and Engineering: A, Vol. 420, pp. 30-46. (2006)
12. K. Nogita, C. M. Gourlay, and T. Nishimura, “Cracking and Phase Stability in Reaction Layers between Sn-Cu-Ni Solders and Cu Substrates”, JOM, Vol. 61, pp. 45-51. (2009)
13. S. Bader, W. Gust, and H. Hieber, “Rapid Formation of Intermetallic Compound by Interdiffusion in the Cu-Sn and Ni-Sn System”, Acta Metal, Vol. 43, pp. 329-337. (1995)
14. A. Goetzberger, C. Hebling, and H. W. Schock, “Photovoltaic Materials, History, Status and Outlook”, Materials Science and Engineering R, Vol. 40, pp. 1-46. (2003)
15. A. G. Aberle, “Progress with Polycrystalline Silicon Thin-Film Solar Cells on Glass at UNSW”, Journal of Crystal Growth, Vol. 287, pp. 386-390. (2006)
16. B. Y. Lee, T. L. Hoang,, S. B. Cho, J. Y. Huh, and Y. S. Lee, “Wettability and Reaction between Solder and Silver Busbar during the Tabbing Process for Silicon Photovoltaic Modules”, Japanese Journal of Applied Physics, Vol. 51, pp. 10NA12-1-10NA12-4. (2012)
17. H. Wirth, “Tabbing-stringing Quality Control Challenges”, Photovoltaics International, Vol. 9, pp. 160-169. (2010)
18. M. Gast, M. Kontges and R. Brendel , “Lead-Free On-Laminate Laser Soldering: A New Module Assembling Concept”, Progress in Photovoltaics: Research and Applications, Vol. 16, pp. 151-157. (2008)
19. Y. Endo, T. Tsuji, H. Akutsu, T. Kimura, K. Sawahata, and H. Bando, “Development of Solder-coated, Soft-annealed Copper Flat Wire for Photovoltaic Systems”, Hitachi Cable Review, No. 26, pp. 1-4 (2007)
20. L. J. Caballero, P. Sanchez-Friera, B. Lalaguna, J. Alonso, and M. A. Vazquez, “Series Resistance Modelling of Industrial Screen-Printed Monocrystalline Silicon Solar Cells and Modules Including the Effect of Spot Soldering”, Photovoltaic Energy Conversion, Vol. 2, pp. 1388-1391. (2006)
21. L. Castaner and S. Silvestre, “Modelling Photovoltaic System”, Wiley, pp. 77-82. (2002)
22. P.T. Vianco and D. R. Frear, “Issues in the Replacement of Lead-Bearing Solder”, Journal of Electronic Material, Vol. 33, pp. 321-328. (2004)
23. “Lead and Your Health”, National Institute of Environmental Health Sciences. (October 2013)
24. K. N. Tu and J. C. M. Li, “Spontaneous Whisker Growth on Lead-Free Solder Finishes” Materials Science and Engineering: A, Vol. 409, pp. 131-139. (2005)
25. M. Barsoum, E. Hoffman, R. Doherty, S. Gupta, and A. Zavaliangos, “Driving Force and Mechanism for Spontaneous Metal Whisker Formation”, Vol. 93, pp. 206104-1-206104-4. (2004)
26. “ASM Handbook: Alloy Phase Diagrams”, ASM International, Vol. 3, p. 269 and p. 769. (1992)
27. K. S. Kim, S. H. Huh, and K. Suganuma, “Effects of Cooling Speed on Microstructure and Tensile Properties of Sn-Ag-Cu Alloys”, Materials Science and Engineering A, Vol. A333, pp. 106-144. (2002)
28. K. W. Moon, W. J. Boettinger, U. R. Kattner, F. S. Biancaniello, and C.A. Handwerker, “Experimental and Thermodynamic Assessment of Sn-Ag-Cu Solder Alloys”, J. of Electronic Materials, Vol. 29, pp. 1122-1136. (2000)
29. K. N. Tu, T. Y. Lee, J. W. Jang, L. Li, D. R. Frear, K. Zeng, and J. K. Kivilahti, “Wetting Reaction Versus Solid State Aging of Eutectic SnPb on Cu”, Journal of Applied Physics, Vol. 89, pp. 4843-4849. (2001)
30. H. K. Kim and K. N. Tu, “Kinetic Analysis of the Soldering Reaction between Eutectic SnPb Alloy and Cu Accompanied by Ripening”, Physical Review B, Vol. 53, pp. 16027-16034. (1996)
31. X. Deng, G. Piotrowski, J. J. Williams, and N. Chawla, “Influence of Initial Morphology and Thickness of Cu6Sn5 and Cu3Sn Intermetallics on Growth and Evolution during Thermal Aging of Sn-Ag Solder/Cu Joints”, Journal of Electronic Materials, Vol. 32, pp. 1-11. (2003)
32. J. R. Black, “Electromigration-A Brief Survey and Some Recent Results”, IEEE Transactions on Electronic Devices, Vol. ED-16, pp. 338-347. (1969)
33. J. W. Nah, J. O. Suh, and K. N. Tu, “Effect of Current Crowding and Joule Heating on Electromigration-Induced Failure in Flip Chip Composite Solder Joints Tested at Room Temperature”, Journal of Applied Physics, Vol. 98, pp. 013715-1-013715-6. (2005)
34. C. M. Lai, C. H. Su and K. M. Lin, “Analysis of the Thermal Stress and Warpage Induced by Soldering in Monocrystalline Silicon Cells”, Applied Thermal Engineering, Vol. 55, pp. 7-16. (2013)
35. P. Schmitt, P. Kaiser, C. Savio, M. Tranitz, and U. Eitner, “Intermetallic Phase Growth and Reliability of Sn-Ag-Soldered Solar Cell Joints”, Energy Procedia, Vol. 27, pp. 664-669. (2012)
36. C. P. Wong, S. H. Shi, and G. Jefferson, “High Performance No-Flow Underfills for Low-Cost Flip-Chip Applications: Material Characterization”, IEEE Transactions on Components, Packaging, and Manufacturing Technology-Part A, Vol. 21, pp. 850-858. (1998)
37. D. R. Frear, S. N. Burchett, H. S. Morgan, and J. H. Lau, “The Mechanics of Solder Alloy Interconnects”, Van Norstrand Reinhol, p. 60. (1994)
38. 葉韶凱,「鍍鎳處理對無鉛銲錫銲點機械性質與組織之影響研究」,國立臺北科技大學材料科學與工程研究所碩士論文,頁27,民國98年6月。
39. 詹承偉,「Sn-3.0Ag-0.5Cu-xNi無鉛銲錫合金拉伸及震動破壞特性之研究」,國立成功大學材料科學及工程研究所碩士論文,民國96年7月。
40. W. Y. Chen, C. Y. Yu, J. G. Duh “Suppressing the Growth of Interfacial Cu-Sn Intermetallic Compounds in the Sn-3.0Ag-Cu-0.1Ni/Cu-15Zn Solder Joint during Thermal Aging”, Journal of Materials Science, Vol. 47, pp. 4012-4018. (2012)
41. H. Nishikawa, J. A. Piao, and T. Takemoto, “Interfacial Reaction between Sn-0.7Cu (-Ni) Solder and Cu Substrate”, Journal of Electronic Material, Vol. 35, pp. 1127-1123. (2005)
42. C. H. Wang, H. T. Shen and W. H. Lai, “Effective Suppression of Electromigration-Induced Cu Dissolution by Using Ag as a Barrier Layer in Lead-Free Solder Joints”, Journal of Alloys and Compounds, Vol. 546, pp. 35-41. (2013)
43. Y. H. Hsiao, Y. C. Chuang, and C.Y. Liu, “Prevention of Electromigration-Induced Cu Pad Dissolution by Using a High Electromigration-Resistance Ternary Cu-Ni-Sn Layer”, Scripta Materialia, Vol. 54, pp. 661-664. (2006)
校內:2017-07-28公開