| 研究生: |
曾偉良 Chen, Wai-Leong |
|---|---|
| 論文名稱: |
奈米碳片,鑽石,石墨烯與其複合薄膜在電化學與場發射上的應用 Carbon nanowall, diamond, graphene and related carbon composite films for electrochemical and field emission applications |
| 指導教授: |
曾永華
Tzeng, Yonhua |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 206 |
| 中文關鍵詞: | 石墨烯 、奈米碳片 、直流電漿化學氣相沉積法 、熱分解化學氣相沉積法 |
| 外文關鍵詞: | Graphene, Carbon nanowalls, Direct-current PECVD, Thermal CVD |
| 相關次數: | 點閱:104 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗主要分成兩大部分,第一部分是以石墨烯製程為主,除了探討石墨烯的製程實驗與分析外,也進一步量測其電化學的特性。除此之外,我們也發展了一種石墨烯的轉移技術,在不使用PMMA下成功地把石墨烯薄膜大面積的從銅箔片轉移到任何基板上。第二部分是以奈米碳片的製程與應用為主,並且我們結合鑽石薄膜與奈米碳片製得幾種不同的複合材料,在電化學的應用上也取得不錯的成果。最後,我們以透射式電子顯微鏡進一步探討成長於矽基板上的奈米碳片,並且深入探討奈米碳片在矽基板上的成長機制。
奈米碳片、石墨烯與鑽石等其他碳材料結構都是碳的同素異構物。雖然以化學沉積法成長鑽石薄膜的技術早在半個世紀前就已經開始發展,但因為成長速率的限制與鑽石單晶成長難以控制,合成鑽石的技術在近20年才開始蓬勃發展。自1985年 Fullence-C60被發現以來,碳材料的課題一直備受關注,因為C60的獨特特性使它能夠應用在不同領域上,也引起不少的研究學者投入了碳材料的研究領域。在1991年日本科學家飯島澄男偶然發現了奈米碳管 ,奈米碳管擁有特殊的電子傳導特性且具有類似鑽石的楊氏模數,因此引起許多科學家的關注。但是,奈米碳管為一維結構,在應用上有所侷限,所以許多科學家開始探討二維結構碳材料存在的可能性。2004年,英國曼徹斯特大學的A.K.Geim與K.S.Novoselov等研究團隊以膠帶剝落法取得二維的單層石墨烯薄膜,引起許多研究團隊紛紛投入了石墨烯的研究領域;2010年,A.K.Geim與K.S.Novoselov學者也以「二維特殊材料石墨烯進行突破性實驗」奪下了諾貝爾物理獎。目前半導體工業技術發展迅速,在積體電路元件設計上因尺寸縮小化的限制,造成許多發展上的瓶頸。然而,因為石墨烯的電子傳導速率快,而且僅為原子層的厚度,在未來工業應用上扮演著重要的角色。
Carbon nanowalls (CNWs) with nano-meter sharp edges extending in a two-dimensional wall-like network and a large effective surface area are useful for many applications including high current density and low voltage electron emitters operating at room temperature. Diamond has high hardness, high thermal conductivity, chemical inertness, etc. and, therefore, many potential advantages of combining outstanding properties of diamond and those of carbon nanowalls to achieve excellent performance. We have fabricated CNWs using Direct Current (DC)-Plasma Enhanced Chemical Vapor Deposition (DC-PECVD) in gas mixtures of methane and hydrogen. Diamond was synthesized using Microwave Plasma Enhanced Chemical Vapor Deposition (MW-PECVD) and DC-PECVD processes also in gas mixtures of methane diluted by hydrogen with or without argon additive. Several carbon nanostructures including CNWs and diamond nanowalls (DNWs) as well as carbon nanowall-in-diamond(CNW-in-D), and carbon nanowall-on-diamond (CNW-on-D) composite structures have been synthesized. The synthesis processes, properties and applications of these carbon nanostructures as electron field emitters and electrochemical electrodes will be reported.
HR-TEM examination of the interface between graphene and silicon shows that multi-layer graphene (002) planes are epitaxial on silicon (111) plane and surrounded by amorphous carbon. The lattice mismath is about 8% between these two planes. The stress is realesed by dislocations. We attribute the heteroepitaxial growth of graphene on silicon to the fact that the (100) silicon substrate is etched by hydrogen-rich plasma at the CNW growth temperature of 800-900C to form many (111) planes, which, in turn, result in many dangling bonds for reacting with C2 radicals to allow heteroepitaxial growth of graphene on silicon with dislocation at the interface to relax partial lattice mismatch. Raman spectra show signaficantly strong G and 2D band of graphene. The synthesis processes, properties and growth mechanism of this hetero-epitaxial multi-layer nano-graphene from plasma modified surfaces of silicon substrate will be reported
A novel process for transferring thermal CVD single-layer graphene from copper foils to destination substrates and the characteristics of transferred graphene and its modified graphene after being subjected to hydrogenation in a remote microwave plasma in hydrogen are presented. Although graphene is mechanically very strong, considering its atomically thin structure, large-area single-layer graphene is practically very fragile especially during handling and transfer from one substrate to another. Handling of large-area free-standing graphene is even more challenging. Hydrogenation of graphene allows fine tuning of its electrical resistivity. Properties and applications of hydrogenated graphene transferred to destination substrates by a novel transfer process with minimum stress induced during handling are reported.
參考文獻
[1]Geim, A. K. and Novoselov, K. S.(2007), Nature Materials, 6 (3): 183–191.
[2]http://www.nistep.go.jp/achiev/ftx/eng/stfc/stt037e/qr37pdf/STTqr3705.pdf
[3]K. Nishimura and H. Sasaoka(2006), Japanese Patent pending, p2006 - 179457A; World Intellectual Property Organization, International Publication Number WO2006/057459
[4]K.Nishimura and H. Sasaoka: Ext. Abstr. (2004),NDF Diamond Symp , p. 242
[5]kelly BT. Physics of Graphite(1981), Applied Science, London:475.
[6]Fukushima H, Drzal LT (2003), Annu Tech Conf Soc Plast Eng;61:2230
[7]Singh V et al (2011). Prog Mater Sci,doi:10.1016/j.pmatsci.2011.03.003,
[8]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V.Dubonos, I. V. Grigorieva, and A. A. Firsov(2004), Science 306, 666.
[9]Eda G, Fanchini G, Chhowalla M(2008), Nature Nanotechnol;3:270.
[10] Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, et al. (2007), Carbon;45:1558.
[11]Becerril HA, Man J, Liu Z, Stoltenberg RM, Bao Z, Chen Y. (2008), ACS Nano; 2:463.
[12]Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, De S, et al. (2008), Nature Nanotechnoly;3:563.
[13]Blake P, Brimicombe PD, Nair RR, Booth TJ, Jiang D, Schedin F, et al. (2008), Nano Lett;8:1704.
[14]Lotya M, Hernandez Y, King PJ, Smith RJ, Nicolosi V, Karlsson LS, et al. (2009), J Am Chem Soc;131:3611.
[15]Green AA, Hersam MC (2009), Nano Lett;9:4031.
[16]de Heer WA, Berger C, Wu X, First PN, Conrad EH, Li X,et al. (2007),143:92.
[17]Varchon F, Feng R, Hass J, Li X, Nguyen BN, Naud C, et al. (2007), Phys Rev Lett;99:126805.
[18]Forbeaux I, Themlin JM, Debever JM. (1998), Phys Rev B;58:16396.
[19]Hass J, Heer WAd, Conrad EH. (2008), J Phys: Condens Matter;20:323202.
[20]Penuelas J, Ouerghi A, Lucot D, David C, Gierak J, Estrade-Szwarckopt H, et al. (2009), Phys Rev B;79:033408.
[21]Tedesco JT, Jernigan GG, Culbertson JC, Hite JK, Yang Y, Daniels KM, et al. (2010) Appl Phys Lett;96:222103.
[22]Sprinkle M, Siegel D, Yu Y, Hicks J, Tejeda A, Taleb-Ibrahimi A, et al. (2009) Phys Rev Lett;103:226803.
[23]Dong Su Lee, Christian Riedl, Benjamin Krauss, Klaus von Klitzing, Ulrich Starke and Jurgen H. Smet, (2008), Nano Lett., , 8 (12), pp 4320–4325.
[24]Wang JJ, Zhu MY, Outlaw RA, Zhao X, Manos DM, Holoway BC. (2004),Carbon;42:2867.
[25]Wang JJ, Zhu MY, Outlaw RA, Zhao X, Manos DM, Holoway BC.(2004), Appl Phys Lett;85:1265.
[26]Vitchev R, Malesevic A, Petrov RH, Kemps R, Mertens M, Vanhulsel A, et al. (2010), Nanotechnolgy;21:095602.
[27]Zhu M, Wang J, Holoway BC, Outlaw RA, Zhao X, Hou K, al. (2007), Carbon;45:2229.
[28]Somani PR, Somani SP, Umeno M. (2006), Chem Phys Lett;430:56.
[29]Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, et al. (2009), Nature;457:706.
[30]Chae SJ, Gunes F, Kim KK, Kim ES, Han GH, Kim SM, et al. (2009), Adv Mater ;21:2328.
[31]Lee S, Lee K, Zhong Z. (2010), Nano Lett;10:4702.
[32]Lee Y, Bae S, Jang H, Jang S, Zhu S-E, Sim SH, et al.(2010), Nano Lett;10:409
[33]Cao H, Yu Q, Colby R, Pandey D, Park CS, Lian J, et al. (2010), J Appl Phys;107:044310.
[34]Bhaviripudi S, Jia X, Dresselhaus MS, Kong J. (2010), Nano Lett;10:4128.
[35]Li X, Cai W, An J, Kim S, Nah J, Yang D, et al. (2009), Science;324:1312.
[36]Coraux, J.; N'Diaye, A. T.; Busse, C.; Michely, T. (2008), Nano Letters, 8, 565-570.
[37]Q. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen and S. S. Pei(2008), Appl. Phys. Lett., vol.93, , p.113103.
[38]A. N.Obraztsov , E. A. Obraztsova, A. V. Tyurnina and A. A. Zolotukhin(2007), Carbon, vol 45, pp.2017-2021.
[39]Li, X. S.; Cai, W. W.; An, J. H.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R. D.; Velamakanni, A.; Jung, I.; Tutuc, E.; Banerjee, S. K.; Colombo, L.; Ruoff, R S. (2009), Science, 324, 1312-1314.
[40]Li, Xuesong; Magnuson, Carl W.;Venugopal, Archana; An, Jinho; Suk, Ji Won; Han, Boyang; Borysiak, Mark; Cai, Weiwei; Velamakanni, Aruna; Zhu, Yanwu; Fu, Lianfeng; Vogel, Eric M.; Voelkl, Edgar; Colombo, Luigi; Ruoff, Rodney S (2010), Nano letters ,10 4328-4334.
[41]Li, X. S.; Magnuson, C. W.; Venugopal, A; Tromp, R. M.; Hannon, J. B.; Vogel, E. M.; Colombo, L.; Ruoff, R. S. (2011), Journal of the American Chemical Society, 133, 2816–2819.
[42]Xuesong Li; Weiwei Cai; Luigi Colombo; Rodney S. Ruoff. (2009), Nano Letters 9, 4268.
[43]Weiwei Cai, Yanwu Zhu, Xuesong Li, Richard D. Piner, and Rodney S. Ruoff. (2009), Applied Physics Letters, 95, 123115/1-6.
[44]Xuesong Li, Weiwei Cai, Inhwa Jung, Jinho An, Dongxing Yang, Aruna Velamakanni, Richard Piner, Luigi Colombo, Rodney S. Ruoff. (2009), ECS Transactions, 19, 41-52.
[45]An, Jinho, Woelkl, Edgar; Suk, Ji Won; Li, Xuesong; Magnuson, Carl W.; Fu, Lianfeng; Tiemeijer, Peter; Bischoff, Maarten; Freitag, Bert; Popova, Elmira; Ruoff, Rodney S. (2011), ACS Nano DOI: 10.1021/nn103102a.
[46]Lee Y, Bae S, Jang H, Jang S, Zhu S-E, Sim SH, et al.(2010), Nano Lett 10:409.
[47]Bae S, Kim H, Lee Y, Xu X, Park J-S, Zheng Y, et al. (2010), Nat Nanotechnol ;5:574.
[48]Reina, A.; Jia, X.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.;Dresselhaus, M. S.; Kong, J. Nano Lett. (2009), 9, 30–35.
[49]Xuesong Li, Yanwu Zhu, Weiwei Cai .et al. (2009), Nano Lett. 9, 4359–4363
[50]Reina, A.; Son, H.; Jiao, L.; Fan, B.; Dresselhaus, M. S.; Liu, L. F.;Kong(2008), J. J. Phys. Chem. C, 112, 17741–17744.
[51]http://www.nnin.org/doc/2010nninreura/2010nninreuPhamP.pdf
[52]Regan, W.; Alem, N.; Alem_an, B.; Geng, B.; Girit, C.; Maserati, L.; Wang, F.; Crommie, M.; Zettl, A ( 2010), Appl. Phys. Lett., 96, 113102.
[53]Z. Y. Juang, C. Y. Wu, A. Y. Lu, C. Y. Su, K. C. Leou, F. R. Chen, C. H. Tsai(2010), Carbon 48 3169.
[54]Ariel Ismach,Clara Druzgalski,Samuel Penwell,Adam Schwartzberg(2010),Maxwell Zheng, Ali Javey,Jeffrey Bokor, and Yuegang Zhang. Nano Lett; 10: 1542-1548.
[55]Xiaolin Li, Guangyu Zhang, Xuedong Bai, Xiaoming Sun, Xinran Wang, Enge Wang, Hongjie Dai. (2008), Nature Nanotechnology, 3 (9), 538-542
[56]Si, Y. and E.T. Samulski (2008), Nano Letters, 8(6): p. 1679-1682.
[57]Ni ZH, Wang HM, Kasim J, Fan HM, Yu T, Wu YH, et al. (2007).Nano Lett;7:2758.
[58]Jung I, Pelton M, Piner R, Dikin DA, Stankovich S, Watcharotone S, et al. (2007), Nano Lett;7:3569.
[59]Blake P, Hill EW, Neto AHC, Novoselov KS, Jiang D, Yang R, et al (2007),Appl Phys Lett;91:063124.
[60]J. I. Paredes et al. (2009), Nano letters.;25:5957.
[61]Lee C, Wei X, Kysar JW, Hone J. (2008),Science;321:385.
[62]Girit CO, Meyer JC, Erni R, Rossell MD, Kisielowski C, Yang L, et al. (2009), Science;323:1705
[63]Meyer JC, Kisielowski C, Erni R, Rossell MD, Crommie MF, Zettl A. (2008), Nano Lett;8:3582.
[64]Meyer JC, Kisielowski C, Erni R, Rossell MD, Crommie MF, Zettl A. (2008),Nano Lett;8:3582.
[65]Erickson K, Erni R, Lee Z, Alem N, Gannett W, Zettl A.GoImez-Navarro C, Meyer JC, Sundaram RS, Chuvilin A, Kurasch S, Burghard M, et al. (2010), Nano Lett;10:1144.
[66]Chun-Chieh Lu (2009), “Controlled Growth of Single-Layer and Double-Layer Graphene Sheets on Patterned Silicon Wafers”,NTHU.
[67]Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, et al. (2006),Phys Rev Lett; 97:187401.
[68]Calizo I, Balandin AA, Bao W, Miao F, Lau CN (2007), Nano Lett;7:2645.
[69]Yu T, Ni Z, Du C, You Y, Wang Y, Shen Z. (2008),J Phys Chem C;112:12602.
[70]Das A, Pisana S, Chakraborty B, Piscanec S, Saha SK, Waghmare UV, et al. (2008) 3:210
[71]S. Iijima, Nature (1991), 354, 56.
[72]C. M. Lieber, (2003) MRS Bull.28, 486.
[73]Y. Xia, P. Yang, Y. Sun, Y. Wu(2003), B. Mayers, B.Gates, Y. Yin, F. Kim and H. Yan, Adv. Mater., 31, 5.
[74]C.Weisbuch and B.Vinter (1991), Quantum Semiconductor Structures: Fundamentals and Applications , Academic Press, Boston,.
[75]J. P. Harbison, T. Sands, R. Ramesh, N. Tabatabate H. L. Gilchrist, L. T. Florez and V. G. Keramidas(1990), J. Vac Sci. Technol., B, , 8, 242
[76]F. J. Himpsel(1995), Surf. Rev. Lett, , 2, 81.
[77]T.Ando, A.B. Fowler and F. Stern (1982), Rev. Mod. Phys, 54, 437.
[78]K. von Klitzing, G. Dorda and M. Peper(1980), Phys Rev. Lett., , 45, 494.
[79]D. Tsui and H. Stormer(1986), IEEE J. Quantum Electron , 22. 1711.
[80]J. L. Merz and P. M. Petroff, Maer. Sci. Eng,B(1991),Solid State Mater. Adv. Technol , 9, 275.
[81]Y. Arakawa and N. Sakaki (1982), Appl. Phys. Lett,. 40, 939.
[82]Yihong Wu, Bingjun Yang, Baoyu Zong, Han Sun, Zexiang Shen, Yuanping
Feng (2004), Mater. Chem. 14 469
[83]S. Kurita, A.Yoshimura, H. Kawamoto, T.Uchida, K.Kojima, and M.Tachibana(2005), J. Appl. Phys., Vol. 97,pp104320-1-pp104324-5
[84]K. Kobayashi, M. Tanimura, H. Nakai, A. Yoshimura, H. Yoshimura, K. Kojima, M. Tachibara, (2007), JOURNAL OF APPLED PHYSICS PHYSICS 101, 094306
[85]M. Hiramatsu and M. Hori, Carbon Nanowalls,DOI
10.1007/978-3-211-99718-5_2, # Springer-Verlag/Wien 2010
[86]Ando Y, Zhao X, OhkohchiM. (1997), Carbon 35: 153–158
[87]Shang NG, Au FCK, Meng XM, Lee CS, Bello I, Lee ST (2002), Chem Phys Lett 358: 187–191
[88]Chuang ATH, Boskovic BO, Robertson J. (2006), Diam Relat Mater 15: 1103–1106
[89]Zhu MY, Wang JJ, Outlaw RA, Hou K, Manos DM, Holloway BC (2007), Diam Relat Mater 16: 196–201
[90]Hishikawa T, Hiramatsu M, Hori M In (2007), Proc. 29th International symposium on Dry Process 253–254
[91]Zhang H, Kikuchi N, Kogure T, Kusano E (2008),Vacuum 82: 754–759
[92]Young-Yi Chen (2009),“Using of DC-PECVD to deposit diamond film and measure the conductivity of hydrogenated diamond surface”, NCKU
[93]http://www.ncku.edu.tw/~facility/facility/index.htm
[94]http://www.chm.bris.ac.uk/lectures/Diamondtalk/bachmann.htm
[95]Chia-lung Chen, “Carbon nanowalls grown by DC-PECVD and its field emission measurement”,NCKU,(2009).
[96]Yonhua Tzeng, Chia-lung Chen, Young-Yi Chen, Chih-Yi Liu,(2010), Diamond and Related Materials, 19, 2-3, 201-204
[97]J. O. Sofo, A. S. Chaudhari and G. D. Barber(2007), Physical Review B, 75 153401,
[98]D. C. Elias, R. R. Nair, et al(2009), Science 323 pp. 610.