| 研究生: |
李明澤 Lee, Ming-Tse |
|---|---|
| 論文名稱: |
CD44促進食道癌細胞表面纖連蛋白內吞而抑制經由纖連蛋白組裝所導致的癌症轉移 The CD44-promoted Fibronectin Endocytosis Prevents Pericellular Fibronectin Assembly-mediated Metastasis of Esophageal Squamous Cell Carcinoma Cells |
| 指導教授: |
鄭宏祺
Cheng, Hung-Chi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生物化學暨分子生物學研究所 Department of Biochemistry and Molecular Biology |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 130 |
| 中文關鍵詞: | 纖連蛋白 、CD44 、組裝 、內吞 、懸浮性癌細胞 、血行性癌細胞 、癌症轉移 |
| 外文關鍵詞: | Fibronectin, CD44, Assembly, Endocytosis, Suspanded tumor cell, Circulating tumor cell, Cancer metastasis |
| 相關次數: | 點閱:123 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
血行性癌細胞(circulating tumor cells)表面纖連蛋白(fibronectin, FN ) 的組裝在與肺臟血管內皮細胞結合機制中扮演重要的角色。不具穿膜區域的胞外基質(extracellular matrix)中的一員FN需透過與細胞表面穿膜蛋白受器結合來促進FN的組裝,但血行性癌細胞膜上的FN受器尚未被研究。目前我們實驗室已發現鈉氫離子交換蛋白(Sodium/hydrogen exchanger;NHE)可扮演此受器的角色而促進FN的組裝與癌細胞肺轉移。而有文獻也指出,另一細胞表面穿膜蛋白CD44也會與FN結合。CD44 的數個exons中只variant exon 3 (V3)接有heparan sulfate glycosaminoglycans,而FN又含有數個heparin binding sites,此事實合理化了這兩分子的結合,但CD44與癌細胞轉移能力的關係卻極具爭議性。我們實驗室過去發現低轉移能力之人類乳癌及食道癌細胞中CD44扮演抑制轉移的角色。且在臨床上,含variant exon 3的isoforms (V3-CD44)在低轉移程度的癌症病人組織中表現較多。文獻又指出CD44可透過lipid raft被細胞內吞。因此,我們假設CD44可能利用v3與FN結合並藉由lipid rafts進行內吞來抑制NHE上FN的組裝並減少肺轉移。食道癌在台灣的發病率連年攀升,因此我們以食道癌為研究模式。首先,我們發現食道癌細胞表面組裝的程度主要受到FN內吞的影響而非自環境中攝取FN的能力。接著我們發現v3-CD44在食道癌細胞中的確可藉著與FN結合而促進整個V3-CD44/FN複合體在lipid raft區域內內吞入細胞中。另外,由外圍移位至lipid raft區域的NHE會促進含NHE、v3-CD44、高分子量FN之巨大複合體被食道癌細胞經由依賴V3-CD44途徑所內吞,並減少表面FN組裝。本實驗室的研究已知Rho A可以負調控FN組裝,我們接著發現因v3-CD44/FN的共同內吞而受抑制的細胞表面FN組裝可被Rho A下游之Rho kinase (ROK)蛋白所促進。最後,我們更發現v3-CD44可在Lipid raft以外區域扮演FN組裝之細胞表面受器。這些結果提供有力的證據來支持v3-CD44可利用與FN的結合與有lipid raft參與的內吞,而抑制FN組裝的假說。本論文部分揭開了懸浮(血行性)食道癌癌細胞調控細胞表面組裝FN的訊息傳遞分子機制,提供了未來遏止癌症轉移的可能治療標靶分子,且可能為食道癌癌症病人因延長壽命而帶來一線治癒的曙光。
The pericellular fibronctin (FN) assembled on circulating tumor cells (CTCs) plays an important role in mediating binding of CTCs to the lung endothelia. In order to be assembled on suspended tumor cell surfaces, FN, one of non-transmembrane extracellular matrix components, must first bind to surface transmembrane receptor(s). However, not any evidence has been provided in the studies of the surface transmembrane receptor(s) on suspended tumor cells for FN. We have preliminarily found that Sodium/hydrogen exchanger (NHE) may serve as such a FN receptor in promoting cell surface FN assembly, leading to cancer metastasis in the lungs. Interestingly, CD44, another cell surface transmembrane protein, is also capable of binding to FN. Among various exons of CD44, only variant exon 3 (V3) is glycosylated with heparan sulfate glycosaminoglycans, a potential FN-binding site within CD44 to bind to heparin binding sites within FN. Nevertheless, the relationship between CD44 expression and cancer metastasis is relatively controversial. Our preliminary results indicate a role of CD44 expressions of human breast cancer and esophageal squamous carcinoma cells (ESCCs) with low metastatic abilities in suppressing metastases. Clinically, it has also been found that isoforms harboring V3 (V3-CD44s) are highly expressed in cancer tissues of those cancer patients who have less metastatic complications and better prognosis. Moreover, it has been known that CD44 within lipid rafts may be endocytosed, leading us to the hypothesis that V3-CD44s suppress cancer metastasis via promoting lipid raft-engaged endocytosis of V3-CD44s/FN complexes and thus inhibiting NHE-mediated pericellular FN assembly on cancer cell surfaces. Since the morbidity and mortality of ESCC in Taiwan recently have been climbing high, we thus employ ESCC as our main study model. We first demonstrated that it is the ability of FN endocytosis, but not that of the FN-uptaking, that regulates pericellular FN assembly on ESCCs. Next, we showed that the V3-CD44 was endocytosed together with surface FN being formed as a large complex within lipid rafts. Moreover, we found that the translocation of NHE into lipid rafts may promote a V3-CD44-mediated endocytosis of large complexes including NHE, V3-CD44, and polymeric FN, leading to the reduction of the pericellular FN assembly of ESCCs. Preliminarily, we found that the activity of RhoA negatively regulates pericellular FN assembly of breast cancer cells. Here, we showed that a reduction of pericellular FN assembly via endocytosis of V3-CD44/FN complexes was provoked by Rho kinases (ROKs), the direct downstream effectors of RhoA. Finally, we found that, once located outside lipid rafts, V3-CD44 may serve as another cell surface receptor in promoting pericellular FN assembly. These results strongly support our hypothesis that V3-CD44 suppresses pericelllular FN assembly of ESCCs via complexing with FN within lipid rafts and promoting endocytosis of the V3-CD44/FN complexes. This thesis partially unveils the signaling regulatory mechanism for pericellular FN assembly of suspended ESCCs, provides candidate target molecules for therapeutics to impede cancer metastasis, and sheds lights on curing ESCC patients even in late stages by prolonging patients’ survivals.
1 Fidler, I. J. Critical determinants of cancer metastasis: rationale for therapy. Cancer chemotherapy and pharmacology 43 Suppl, S3-10 (1999).
2 Chambers, A. F. et al. Critical steps in hematogenous metastasis: an overview. Surgical oncology clinics of North America 10, 243-255, vii (2001).
3 Langley, R. R. & Fidler, I. J. Tumor cell-organ microenvironment interactions in the pathogenesis of cancer metastasis. Endocrine reviews 28, 297-321 (2007).
4 Miles, F. L., Pruitt, F. L., van Golen, K. L. & Cooper, C. R. Stepping out of the flow: capillary extravasation in cancer metastasis. Clinical & experimental metastasis 25, 305-324 (2008).
5 Nguyen, D. X., Bos, P. D. & Massague, J. Metastasis: from dissemination to organ-specific colonization. Nature reviews. Cancer 9, 274-284 (2009).
6 Pathak, A. & Kumar, S. Independent regulation of tumor cell migration by matrix stiffness and confinement. Proceedings of the National Academy of Sciences of the United States of America 109, 10334-10339 (2012).
7 Nussenbaum, F. & Herman, I. M. Tumor angiogenesis: insights and innovations. Journal of oncology 2010, 132641 (2010).
8 Aoudjit, F. & Vuori, K. Integrin signaling in cancer cell survival and chemoresistance. Chemotherapy research and practice 2012, 283181 (2012).
9 Bendas, G. & Borsig, L. Cancer cell adhesion and metastasis: selectins, integrins, and the inhibitory potential of heparins. International journal of cell biology 2012, 676731 (2012).
10 Edlund, M., Sung, S. Y. & Chung, L. W. Modulation of prostate cancer growth in bone microenvironments. Journal of cellular biochemistry 91, 686-705 (2004).
11 Triozzi, P. L., Eng, C. & Singh, A. D. Targeted therapy for uveal melanoma. Cancer treatment reviews 34, 247-258 (2008).
12 Hess, K. R. et al. Metastatic patterns in adenocarcinoma. Cancer 106, 1624-1633 (2006).
13 Patanaphan, V., Salazar, O. M. & Risco, R. Breast cancer: metastatic patterns and their prognosis. Southern medical journal 81, 1109-1112 (1988).
14 Paget, S. The distribution of secondary growths in cancer of the breast. 1889. Cancer metastasis reviews 8, 98-101 (1989).
15 Johnson, R. C., Augustin-Voss, H. G., Zhu, D. Z. & Pauli, B. U. Endothelial cell membrane vesicles in the study of organ preference of metastasis. Cancer research 51, 394-399 (1991).
16 Johnson, R. C., Zhu, D., Augustin-Voss, H. G. & Pauli, B. U. Lung endothelial dipeptidyl peptidase IV is an adhesion molecule for lung-metastatic rat breast and prostate carcinoma cells. The Journal of cell biology 121, 1423-1432 (1993).
17 Zhu, D. & Pauli, B. U. Correlation between the lung distribution patterns of Lu-ECAM-1 and melanoma experimental metastases. International journal of cancer. Journal international du cancer 53, 628-633 (1993).
18 Piazza, G. A., Callanan, H. M., Mowery, J. & Hixson, D. C. Evidence for a role of dipeptidyl peptidase IV in fibronectin-mediated interactions of hepatocytes with extracellular matrix. The Biochemical journal 262, 327-334 (1989).
19 Korach, S., Poupon, M. F., Du Villard, J. A. & Becker, M. Differential adhesiveness of rhabdomyosarcoma-derived cloned metastatic cell lines to vascular endothelial monolayers. Cancer research 46, 3624-3629 (1986).
20 Cheng, H. C., Abdel-Ghany, M., Elble, R. C. & Pauli, B. U. Lung endothelial dipeptidyl peptidase IV promotes adhesion and metastasis of rat breast cancer cells via tumor cell surface-associated fibronectin. The Journal of biological chemistry 273, 24207-24215 (1998).
21 Lee, C. H. et al. Independent and combined effects of alcohol intake, tobacco smoking and betel quid chewing on the risk of esophageal cancer in Taiwan. International journal of cancer. Journal international du cancer 113, 475-482 (2005).
22 Lao-Sirieix, P. & Fitzgerald, R. C. Screening for oesophageal cancer. Nature reviews. Clinical oncology 9, 278-287 (2012).
23 Wu, M. T. et al. Risk of betel chewing for oesophageal cancer in Taiwan. British journal of cancer 85, 658-660 (2001).
24 Chie, W. C., Tsai, C. J., Chiang, C. & Lee, Y. C. Quality of life of patients with oesophageal cancer in Taiwan: validation and application of the Taiwan Chinese (Mandarin) version of the EORTC QLQ-OES18: a brief communication. Quality of life research : an international journal of quality of life aspects of treatment, care and rehabilitation 19, 1127-1131 (2010).
25 Ko, Y. C., Chiang, T. A., Chang, S. J. & Hsieh, S. F. Prevalence of betel quid chewing habit in Taiwan and related sociodemographic factors. Journal of oral pathology & medicine : official publication of the International Association of Oral Pathologists and the American Academy of Oral Pathology 21, 261-264 (1992).
26 Pankov, R. & Yamada, K. M. Fibronectin at a glance. Journal of cell science 115, 3861-3863 (2002).
27 Patel, R. S., Odermatt, E., Schwarzbauer, J. E. & Hynes, R. O. Organization of the fibronectin gene provides evidence for exon shuffling during evolution. The EMBO journal 6, 2565-2572 (1987).
28 ffrench-Constant, C. Alternative splicing of fibronectin--many different proteins but few different functions. Experimental cell research 221, 261-271, doi:10.1006/excr.1995.1374 (1995).
29 Mosesson, M. W. & Amrani, D. L. The structure and biologic activities of plasma fibronectin. Blood 56, 145-158 (1980).
30 To, W. S. & Midwood, K. S. Plasma and cellular fibronectin: distinct and independent functions during tissue repair. Fibrogenesis & tissue repair 4, 21, doi:10.1186/1755-1536-4-21 (2011).
31 Plow, E. F., Haas, T. A., Zhang, L., Loftus, J. & Smith, J. W. Ligand binding to integrins. The Journal of biological chemistry 275, 21785-21788 (2000).
32 Kadler, K. E., Hill, A. & Canty-Laird, E. G. Collagen fibrillogenesis: fibronectin, integrins, and minor collagens as organizers and nucleators. Current opinion in cell biology 20, 495-501 (2008).
33 Makogonenko, E., Tsurupa, G., Ingham, K. & Medved, L. Interaction of fibrin(ogen) with fibronectin: further characterization and localization of the fibronectin-binding site. Biochemistry 41, 7907-7913 (2002).
34 Richardson, T. P., Trinkaus-Randall, V. & Nugent, M. A. Regulation of heparan sulfate proteoglycan nuclear localization by fibronectin. Journal of cell science 114, 1613-1623 (2001).
35 Hynes, R. O. & Yamada, K. M. Fibronectins: multifunctional modular glycoproteins. The Journal of cell biology 95, 369-377 (1982).
36 Humphries, M. J., Obara, M., Olden, K. & Yamada, K. M. Role of fibronectin in adhesion, migration, and metastasis. Cancer investigation 7, 373-393 (1989).
37 Ruoslahti, E. Fibronectin and its integrin receptors in cancer. Advances in cancer research 76, 1-20 (1999).
38 Zhang, L. et al. Gene expression profiles in normal and cancer cells. Science 276, 1268-1272 (1997).
39 Bittner, M. et al. Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature 406, 536-540 (2000).
40 Folkman, J. The role of angiogenesis in tumor growth. Seminars in cancer biology 3, 65-71 (1992).
41 Huang, L. et al. Protein kinase Cepsilon mediates polymeric fibronectin assembly on the surface of blood-borne rat breast cancer cells to promote pulmonary metastasis. The Journal of biological chemistry 283, 7616-7627 (2008).
42 Cheng, H. C., Abdel-Ghany, M. & Pauli, B. U. A novel consensus motif in fibronectin mediates dipeptidyl peptidase IV adhesion and metastasis. The Journal of biological chemistry 278, 24600-24607, doi:10.1074/jbc.M303424200 (2003).
43 Jalkanen, S. & Jalkanen, M. Lymphocyte CD44 binds the COOH-terminal heparin-binding domain of fibronectin. The Journal of cell biology 116, 817-825 (1992).
44 Marhaba, R. & Zoller, M. CD44 in cancer progression: adhesion, migration and growth regulation. Journal of molecular histology 35, 211-231 (2004).
45 Knudson, W., Bartnik, E. & Knudson, C. B. Assembly of pericellular matrices by COS-7 cells transfected with CD44 lymphocyte-homing receptor genes. Proceedings of the National Academy of Sciences of the United States of America 90, 4003-4007 (1993).
46 Gunthert, U. et al. A new variant of glycoprotein CD44 confers metastatic potential to rat carcinoma cells. Cell 65, 13-24 (1991).
47 Ratajczak, M. Z. Cancer stem cells--normal stem cells "Jedi" that went over to the "dark side". Folia histochemica et cytobiologica / Polish Academy of Sciences, Polish Histochemical and Cytochemical Society 43, 175-181 (2005).
48 Aruffo, A., Stamenkovic, I., Melnick, M., Underhill, C. B. & Seed, B. CD44 is the principal cell surface receptor for hyaluronate. Cell 61, 1303-1313 (1990).
49 Stamenkovic, I., Amiot, M., Pesando, J. M. & Seed, B. A lymphocyte molecule implicated in lymph node homing is a member of the cartilage link protein family. Cell 56, 1057-1062 (1989).
50 Goldstein, L. A. et al. A human lymphocyte homing receptor, the hermes antigen, is related to cartilage proteoglycan core and link proteins. Cell 56, 1063-1072 (1989).
51 Idzerda, R. L. et al. Isolation and DNA sequence of a cDNA clone encoding a lymphocyte adhesion receptor for high endothelium. Proceedings of the National Academy of Sciences of the United States of America 86, 4659-4663 (1989).
52 Ishii, S. et al. CD44 participates in the adhesion of human colorectal carcinoma cells to laminin and type IV collagen. Surgical oncology 2, 255-264 (1993).
53 Cooper, D. L. & Dougherty, G. J. To metastasize or not? Selection of CD44 splice sites. Nature medicine 1, 635-637 (1995).
54 Ponta, H., Sherman, L. & Herrlich, P. A. CD44: from adhesion molecules to signalling regulators. Nature reviews. Molecular cell biology 4, 33-45, doi:10.1038/nrm1004 (2003).
55 Weber, G. F. et al. Absence of the CD44 gene prevents sarcoma metastasis. Cancer research 62, 2281-2286 (2002).
56 Bourguignon, L. Y. et al. CD44v(3,8-10) is involved in cytoskeleton-mediated tumor cell migration and matrix metalloproteinase (MMP-9) association in metastatic breast cancer cells. Journal of cellular physiology 176, 206-215 (1998).
57 Huang, Q. et al. The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nature cell biology 10, 202-210 (2008).
58 Gao, A. C., Lou, W., Dong, J. T. & Isaacs, J. T. CD44 is a metastasis suppressor gene for prostatic cancer located on human chromosome 11p13. Cancer research 57, 846-849 (1997).
59 Yang, K., Handorean, A. M. & Iczkowski, K. A. MicroRNAs 373 and 520c are downregulated in prostate cancer, suppress CD44 translation and enhance invasion of prostate cancer cells in vitro. International journal of clinical and experimental pathology 2, 361-369 (2009).
60 Rajendran, L. & Simons, K. Lipid rafts and membrane dynamics. Journal of cell science 118, 1099-1102, doi:10.1242/jcs.01681 (2005).
61 Simons, K. & Vaz, W. L. Model systems, lipid rafts, and cell membranes. Annual review of biophysics and biomolecular structure 33, 269-295 (2004).
62 Lee, M. Y., Ryu, J. M., Lee, S. H., Park, J. H. & Han, H. J. Lipid rafts play an important role for maintenance of embryonic stem cell self-renewal. Journal of lipid research 51, 2082-2089, doi:10.1194/jlr.M001545 (2010).
63 Chatterjee, S. & Mayor, S. The GPI-anchor and protein sorting. Cellular and molecular life sciences : CMLS 58, 1969-1987 (2001).
64 Simons, K. & Toomre, D. Lipid rafts and signal transduction. Nature reviews. Molecular cell biology 1, 31-39 (2000).
65 Rajendran, L. et al. Asymmetric localization of flotillins/reggies in preassembled platforms confers inherent polarity to hematopoietic cells. Proceedings of the National Academy of Sciences of the United States of America 100, 8241-8246 (2003).
66 Kurzchalia, T. V. & Parton, R. G. Membrane microdomains and caveolae. Current opinion in cell biology 11, 424-431 (1999).
67 Thankamony, S. P. & Knudson, W. Acylation of CD44 and its association with lipid rafts are required for receptor and hyaluronan endocytosis. The Journal of biological chemistry 281, 34601-34609 (2006).
68 Karpen, H. E. et al. The sonic hedgehog receptor patched associates with caveolin-1 in cholesterol-rich microdomains of the plasma membrane. The Journal of biological chemistry 276, 19503-19511 (2001).
69 Gri, G., Molon, B., Manes, S., Pozzan, T. & Viola, A. The inner side of T cell lipid rafts. Immunology letters 94, 247-252, doi:10.1016/j.imlet.2004.05.012 (2004).
70 Pelkmans, L. & Helenius, A. Endocytosis via caveolae. Traffic 3, 311-320 (2002).
71 Nichols, B. J. GM1-containing lipid rafts are depleted within clathrin-coated pits. Current biology : CB 13, 686-690 (2003).
72 Stoddart, A. et al. Lipid rafts unite signaling cascades with clathrin to regulate BCR internalization. Immunity 17, 451-462 (2002).
73 Yoneda, A., Ushakov, D., Multhaupt, H. A. & Couchman, J. R. Fibronectin matrix assembly requires distinct contributions from Rho kinases I and -II. Molecular biology of the cell 18, 66-75, (2007).
74 Bishop, A. L. & Hall, A. Rho GTPases and their effector proteins. The Biochemical journal 348 Pt 2, 241-255 (2000).
75 Boguski, M. S. & McCormick, F. Proteins regulating Ras and its relatives. Nature 366, 643-654 (1993).
76 Hall, A. Rho GTPases and the actin cytoskeleton. Science 279, 509-514 (1998).
77 Chellaiah, M. A., Biswas, R. S., Rittling, S. R., Denhardt, D. T. & Hruska, K. A. Rho-dependent Rho kinase activation increases CD44 surface expression and bone resorption in osteoclasts. The Journal of biological chemistry 278, 29086-29097 (2003).
78 Gallagher, S., Winston, S. E., Fuller, S. A. & Hurrell, J. G. Immunoblotting and immunodetection. Current protocols in molecular biology / edited by Frederick M. Ausubel ... [et al.] Chapter 10, Unit 10 18, (2008).
79 Zoller, M. CD44: can a cancer-initiating cell profit from an abundantly expressed molecule? Nature reviews. Cancer 11, 254-267, (2011).
80 Hou, Y., Zou, Q., Ge, R., Shen, F. & Wang, Y. The critical role of CD133(+)CD44(+/high) tumor cells in hematogenous metastasis of liver cancers. Cell research 22, 259-272, doi:10.1038/cr.2011.139 (2012).
81 Hao, J. et al. In Vitro and In Vivo Prostate Cancer Metastasis and Chemoresistance Can Be Modulated by Expression of either CD44 or CD147. PloS one 7, e40716, doi:10.1371/journal.pone.0040716 (2012).
82 Naor, D., Sionov, R. V. & Ish-Shalom, D. CD44: structure, function, and association with the malignant process. Advances in cancer research 71, 241-319 (1997).
83 Deng, G. M. & Tsokos, G. C. Cholera toxin B accelerates disease progression in lupus-prone mice by promoting lipid raft aggregation. J Immunol 181, 4019-4026 (2008).
84 Okamoto, I. et al. Regulated CD44 cleavage under the control of protein kinase C, calcium influx, and the Rho family of small G proteins. The Journal of biological chemistry 274, 25525-25534 (1999).
85 Wang, S. J., Wreesmann, V. B. & Bourguignon, L. Y. Association of CD44 V3-containing isoforms with tumor cell growth, migration, matrix metalloproteinase expression, and lymph node metastasis in head and neck cancer. Head & neck 29, 550-558, doi:10.1002/hed.20544 (2007).
86 Olsson, E. et al. CD44 isoforms are heterogeneously expressed in breast cancer and correlate with tumor subtypes and cancer stem cell markers. BMC cancer 11, 418, doi:10.1186/1471-2407-11-418 (2011).
87 Lee, M. S. et al. Smad2 mediates Erk1/2 activation by TGF-beta1 in suspended, but not in adherent, gastric carcinoma cells. International journal of oncology 24, 1229-1234 (2004).
88 Sandfort, V., Eke, I. & Cordes, N. The role of the focal adhesion protein PINCH1 for the radiosensitivity of adhesion and suspension cell cultures. PloS one 5, doi:10.1371/journal.pone.0013056 (2010).
89 Sadek, C. M. & Allen-Hoffmann, B. L. Suspension-mediated induction of Hepa 1c1c7 Cyp1a-1 expression is dependent on the Ah receptor signal transduction pathway. The Journal of biological chemistry 269, 31505-31509 (1994).
校內:2022-01-01公開