簡易檢索 / 詳目顯示

研究生: 李其峻
Lee, Chi-Chun
論文名稱: 帝德式與柯柏式熱風爐之三維熱液動性能分析
3-D Numerical Thermal-Hydraulic Analysis in Didier Type and Krupp-Koppers Type Hot Blast Stove
指導教授: 張錦裕
Jang, Jiin-Yuh
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 106
中文關鍵詞: 熱風爐熱液動分析
外文關鍵詞: thermal hydraulic, Didier-type hot blast stove, Krupp-Koppers type hot blast stove
相關次數: 點閱:66下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為配合中鋼所成立之自主設計技術力專案推動團隊,本論文針對中龍#24 Didier-type 熱風爐之運作情形進行熱液動分析,以期提供中鋼設計、優化熱風爐之參考依據。此外,由於熱風爐處於長時高溫運作條件下,因此若需針對熱風爐爐內進行檢修時,必須將熱風爐冷卻才可進行施工,故本論文亦針對中鋼#34 KK-type 熱風爐進行冷卻散熱之初步分析,探討在不同進口流率下冷卻#34熱風爐所需耗費之時間。
    針對中龍#24 Didier-type熱風爐之熱液動分析方面,本研究輔以中鋼提供之實際之操作條件做為邊界條件進行模擬,並且將模擬結果 與現場時計量測值進行比較,以驗證本研究之有效性。此外,為了能針對整個熱風爐運作過程進行數值分析模擬,需針對其結構進行一些簡化處理,簡化內容主要包含兩方面: (1)將熱風爐各部位沿厚度方向之多種材質所構成之壁磚等效為一種材質,且其性能參數均考慮為溫度之函數、(2)使用非平衡多孔性介質(non-equilibrium porous medium)取代實際多孔蓄熱磚磚(七孔磚),用以簡化蓄熱磚與流體間之熱交換計算。
    在Didier type熱風爐熱液動分析方面,以800K為初始溫度,並以一個週期(On gas + On blast)為單位進行循環計算,直至溫度與速度場達到準穩態 (quasi-steady-state)。通過模擬發現,在On gas 階段,煙氣從燃燒室經過拱頂和火橋到達蓄熱室時,拱頂之結構具有導流作用,致使火橋上方產生渦旋;而在On blast 階段,熱鼓風從蓄熱室經過拱頂與火橋到達燃燒室時,在燃燒室上段左半部亦會因為拱頂之導流作用有渦旋產生。在整個週期內爐內速度均隨溫度和流道截面積之變化而變化,在On gas 階段,燃燒室內隨著高度、時間增加管徑與溫度無明顯之變化,流速約為23.6 m/s,而在蓄熱室中,由於蓄熱磚吸熱之緣故,因此流體溫度隨流動方向降低,進而導致爐身內流速不同,其流速範圍介於6.9 m/s~14.1 m/s;在On blast階段,燃燒室之溫度亦無太大之差異,其流速約為7.8 m/s ,而蓄熱室內流體之溫度呈隨流動方向增上升之趨勢,其流速範圍介於2.16 m/s~4.9 m/s。同時,為了驗證Didier type熱風爐熱液動分析之有效性,將模擬之溫度與熱風爐實測操作過程中不同量測點之溫度進行比對分析。結果顯示,煙氣出口溫度、拱頂壁磚溫度及熱風出口溫度之計算最大誤差分別為4.2% 、6.4%、3.2%,均在10%以內。
    對蓄熱磚而言,在On gas階段,煙氣溫度高於蓄熱磚之溫度,蓄熱磚從煙氣吸熱,蓄熱磚溫度隨時間的增加而增加;在On blast階段,空氣溫度低於蓄熱磚之溫度,因此蓄熱磚向冷鼓風放熱,蓄熱磚溫度隨時間的增加而減小。而在整個週期內,蓄熱磚溫度均隨著高度的增加而上升,且蓄熱磚與流體之溫差約為50~80℃。對壁磚而言,熱風爐各部位之溫度均表現為On gas階段溫度高於On blast階段,整個熱風爐在一個週期內之溫度範圍為200~1350℃,其中,蓄熱室各部位之溫度變化較大,且隨高度和時間之變化而明顯改變,內外壁溫差範圍介於200~1000℃,而燃燒室、拱頂及火橋隨時間和位置之溫度變化不大,內外壁溫差約介於1100~1300℃之間。
    在KK type熱風爐冷卻分析方面,本論文以準穩態之On blast之最後一秒溫度做為初始條件,並探討四種不同進口邊界條件(3.5 kg/s、7 kg/s、14 kg/s、28 kg/s)其冷卻時間之差異,根據結果發現,蓄熱室各監測點之初始溫度與高度成正比,因此其冷卻至 亦耗時越長,此外,燃燒室冷卻之效率將比蓄熱室來的更優異。蓄熱磚則由於其與流體之熱交換效率較壁磚佳,因此蓄熱磚冷卻速度比壁磚還快。在所有監測點中,最不易冷卻之位置為拱頂以及熱風爐頸部位置,因此能以這兩處為判斷基準,藉此判斷熱風爐是否已達冷卻。

    The hot blast stove is one of the most important equipment in the blast furnace iron making process ,the structure of which is composed of four main parts : (1) checker chamber,(2) combustion chamber,(3) dome, and (4) cross-over. The operating process is cyclic. One cycle consists an on-gas period and an on-blast period. In this study, it’s divided into two parts. The first part focus on temperature and velocity distribution in Didier type hot blast stove during the operating process. The second part is investigated to compare the cooling time of Krupp-Koppers type hot blast stove under different inlet boundary condition. The results are described as follows:
    In the thermal hydraulic analysis of Didier type hot blast stove ,the simulation results are compared with the in-situ data, and the maximum error is found to be lower than 10%. The fluid velocity in the hot blast stove is varied with different temperature and flow cross-sectional area. The simulation also show that the fluid(gas) temperature is higher than solid(checker) in checker chamber during on-gas period, and the temperature difference is about 50~60℃.But during on blast period, the fluid(blast) temperature is lower than solid(checker), and the temperature difference is about 70~80℃. In a cycle, the temperature range of the inner wall is between 200℃ and 1350℃. The temperature varies greatly with changes of height and time in checker chamber, the inner and outer wall temperature difference is 200~1000℃, but in the dome, cross-over and combustion chamber, the temperature changes little with time and location, the temperature difference is 1100~1300℃.
    Regarding the cooling analysis of Krupp-Koppers hot blast stove, this study uses the last second of on blast period as the initial condition, and discusses the time required to cool hot blast stove to 100℃ with different inlet boundary condition(3.5 kg/s、7 kg/s、14 kg/s、28 kg/s). According to the simulation results, in the checker chamber, the initial temperature is proportional to the height, so the required cooling time in checker chamber is also proportional to the height, and the combustion chamber cooling efficiency is higher than checker chamber. Among the whole hot blast stove, the most difficultly to cool positions are dome and chamber neck, that need cost longest time to cool to 100℃, therefore ,these two locations can be used as criterion to determine whether the hot blast stove has been cooled down.
    Key words: thermal hydraulic, Didier-type hot blast stove, Krupp-Koppers type hot blast stove

    目錄 摘要 I Abstract III 誌謝 VI 目錄 VII 表目錄 VIII 圖目錄 IX 符號說明 XIII 第一章、緒論 1 1.1、前言 1 1.2、文獻回顧與探討 4 1.3、研究目的 8 第二章、理論分析 9 2.1 物理模型 9 2.2 煙氣、空氣、爐襯、蓄熱磚與鐵殼之性質 10 2.3 統御方程式 14 2.4 初始條件與邊界條件 18 第三章、數值分析 51 3.1 數值方法 51 第四章、結果討論 56 4.1 Didier type熱風爐熱液動分析 56 4.2 KK type熱風爐冷卻分析 85 第五章、結論 103 5.1 Didier type熱風爐熱液動分析 103 5.2 KK type熱風爐熱液動分析 104 參考文獻 105 表目錄 表2- 1 Didier type蓄熱室與燃燒室之壁磚等效密度 20 表2- 2 Didier type拱頂、火橋與支管之壁磚等效密度 20 表2- 3 KK type蓄熱室與燃燒室之壁磚等效密度 21 表2- 4 KK type拱頂、連接管與支管之壁磚等效密度 21 表2- 5 Didier type蓄熱磚密度 22 表2- 6 Didier type蓄熱磚熱傳導係數 22 表2- 7 KK type蓄熱磚密度 23 表2- 8 KK type蓄熱磚熱傳導係數 23 表2- 9煙氣成分之莫耳分率 24 表2- 10煙氣比熱 (kJ/kg-K) 24 表2- 11煙氣熱傳導係數 (W/m-K) 25 表2- 12煙氣黏滯係數 (Pa-s) 25 表4.2- 1 不同質量流率下冷卻各壁磚監測點所需之時間 88   圖目錄 圖1- 1熱風爐運作機制 2 圖1- 2熱風爐系統運作模式 3 圖1- 3 KK type與Didier type差異圖 3 圖2- 1 Didier type熱風爐模型示意圖 26 圖2- 2三維模型之Didier type熱風爐蓄熱磚與流體區域 27 圖2- 3三維模型之Didier type熱風爐壁磚尺寸圖 28 圖2- 4 Didier type拱頂尺寸 29 圖2- 5 KK type熱風爐模型示意圖 30 圖2- 6三維模型之KK type熱風爐蓄熱磚與流體區域 31 圖2- 7三維模型之KK type熱風爐壁磚尺寸圖 32 圖2- 8 KK type拱頂尺寸 33 圖2- 9 Didier type熱風爐蓄熱室壁磚組成 34 圖2- 10 Didier type熱風爐燃燒室壁磚組成 35 圖2- 11 Didier type熱風爐火橋與拱頂壁磚組成 36 圖2- 12 Didier type熱風爐冷、熱風支管組成 37 圖2- 13 KK type熱風爐蓄熱室壁磚組成 38 圖2- 14 KK type熱風爐燃燒室壁磚組成 39 圖2- 15 KK type熱風爐連接管與拱頂壁磚組成 40 圖2- 16 KK type熱風爐冷、熱風支管組成 41 圖2- 17 Didier type蓄熱室壁磚之等效比熱 42 圖2- 18 Didier type燃燒室及其他結構壁磚之等效比熱 42 圖2- 19 Didier type蓄熱室壁磚之等效熱傳導係數 43 圖2- 20 Didier type燃燒室及其他結構壁磚之等效熱傳導係數 43 圖2- 21 KK type蓄熱室壁磚之等效比熱 44 圖2- 22 KK type燃燒室及其他結構壁磚之等效比熱 44 圖2- 23 KK type蓄熱室壁磚之等效熱傳導係數 45 圖2- 24 KK type燃燒室及其他結構壁磚之等效熱傳導係數 45 圖2- 25 Didier type熱風爐蓄熱磚組成 46 圖2- 26 KK type熱風爐蓄熱磚組成 47 圖2- 27 Didier type蓄熱磚之比熱 48 圖2- 28 KK type蓄熱磚之比熱 48 圖2- 29空氣熱物理參數隨溫度變化曲線 49 圖2- 30煙氣進口邊界條件 50 圖2- 31冷鼓風進口質量流率 50 圖3- 1 Didier type熱風爐熱液動分析計算流程圖 52 圖3- 2 KK type熱風爐冷卻分析計算流程圖 53 圖3- 3 Didier type熱風爐之網格示意圖 54 圖3- 4 KK type熱風爐之網格示意圖 55 圖4.1- 1量測點設定 59 圖4.1- 2熱風爐爐身之座標示意圖 60 圖4.1- 3 On gas速度場分布 61 圖4.1- 4 On blast速度場分布 62 圖4.1- 5 On gas煙氣溫度分布 63 圖4.1- 6 On gas蓄熱磚溫度分布 64 圖4.1- 7 On gas內壁面溫度分布 65 圖4.1- 8蓄熱室壁磚之溫度分布at 55min 66 圖4.1- 9蓄熱室壁磚厚度方向溫度分布at 55min 67 圖4.1- 10燃燒室壁磚之溫度分布at 55min 68 圖4.1- 11燃燒室壁磚厚度方向之溫度分布at 55min 69 圖4.1- 12 On blast空氣溫度分布 70 圖4.1- 13 On blast蓄熱磚溫度分布 71 圖4.1- 14 On blast內壁面溫度分布 72 圖4.1- 15蓄熱室壁磚厚度方向之溫度分布at 87min 73 圖4.1- 16蓄熱室壁磚溫度分布at 87min 74 圖4.1- 17燃燒室壁磚厚度方向之溫度分布at 87min 75 圖4.1- 18燃燒室壁磚溫度分布at 87min 76 圖4.1- 19 On gas蓄熱磚與氣體之溫度分佈曲線圖 77 圖4.1- 20 On blast蓄熱磚與氣體之溫度分佈曲線圖 78 圖4.1- 21 On gas煙氣出口模擬與實測點之溫度比對圖 79 圖4.1- 22 On blast空氣出口模擬與實測點之溫度比對圖 80 圖4.1- 23周期內火橋模擬與實測點溫度比對圖 81 圖4.1- 24周期內蓄熱室壁磚內外溫度及溫差隨時間變化曲線 82 圖4.1- 25周期內燃燒室壁磚內外溫度及溫差隨時間變化曲線 83 圖4.1- 26周期內拱頂外溫度及溫差隨時間變化曲線 84 圖4.2- 1 On gas階段(t=100 min)之速度場及溫度場 89 圖4.2- 2 On blast階段(t=214 min)之速度場及溫度場 90 圖4.2- 3蓄熱磚溫度與實測值比較 91 圖4.2- 4流體溫度與實測值比較 92 圖4.2- 5冷卻蓄熱磚溫度隨時間之變化( ) 93 圖4.2- 6冷卻壁磚溫度隨時間之變化( ) 95 圖4.2- 7冷卻蓄熱磚溫度隨時間之變化( ) 96 圖4.2- 8冷卻壁磚溫度隨時間之變化( ) 98 圖4.2- 9各監測點溫度隨時間之變化( ) 99 圖4.2- 10各監測點溫度隨時間之變化( ) 100 圖4.2- 11各監測點溫度隨時間之變化( ) 101 圖4.2- 12各監測點溫度隨時間之變化( ) 102

    參考文獻
    [1] Zhan, Y., Liu, Z.X., He, Y.D., “Calculation of Heat Transfer Process in the Chamber of Hot Blast Stove”, Journal of Baotou University of Iron and Steel Technology,Vol.20,No.1,pp.4-6,2001.
    [2] Xing, G.L., Liu, Y.S., Wu, Q.C., “Effect of Checker-brick’s Thermal Characteristics on Heat Transfer in Chamber of Hot Blast Stove, Mining & Metallurgy, Vol.12, No.3, pp.41-45, 2003.
    [3] Chen, L., “Numerical Analysis in Temperature Field of Checker Chamber in Hot Blast Stove”, Iron Making,Vol.23,No.26,pp.38-40,2004.
    [4] Zhang, L.Q., Zheng, C.G., Wang, H., “A Simple Mathematical Model Simulating Temperature Field of Checker Chamber in Hot Blast Stove” ,Energy for Metallurgical Industry,Vol.23,No.2,pp.23-25,2004.
    [5] Zhong, L.C., Liu, Q.X., Wang, W.Z., “Computer Simulation of Heat Transfer in Regenerative Chambers of Self-preheating Hot Blast Stoves”, ISIJ International, Vol. 44, pp.795-800, 2004.
    [6] Jiang, H., Shen, Y.B., Wen, X.M., Song, L.M., MA, E.J., “Research on Simulation Test of the External-Combustion Hot Stove”, Bao steel,Vol.6,pp.18-23,2004.
    [7] Yang, H.Y., “The Numerical Simulation Analysis of Combustion, Flow Field and Heat Transfer for Hot Blast Stove”, M.S. Thesis, Institute of Mechanical Engineering, National Chiao Tung University,2008.
    [8] Huang, Z., “Numerical Simulation of Heat Transfer in Regenerator and Operation Regulation Research of Hot Blast Stove”, M.S. Thesis, Power Engineering and Engineering Thermophysics, Chongqing University,2008.
    [9] Kimura, Y., Takatani, K., Otsu, N., “Three dimensional mathematical modeling and designing of hot Stove”, ISIJ International, Vol. 50, pp.1040-1047, 2010.
    [10] Tomas Andres Flen, M., Guidi, F., Benedetti, R., Lefranc, G., “Modelization and identification of the hot blast stove’s heating cycle”, 2011 9th IEEE International Conference on Control and Automation (ICCA), pp.1267-1273, 2011.
    [11] Zhang, F.M., Mao, Q.W., Mei, C.H., Li, X., Hu, Z. R., “Dome combustion hot blast stove for huge blast furnace”, Journal Of Iron and Steel Research, Vol.19, pp.1-7, 2012.
    [12] Zhang, Z., “The Cooling Furnace of External Combustion Stove in New #3 Blast Furnace of Panzhihua New Teel Vanadium Iron Works”, Gansu Metallurgy,Vol.35, No.3,pp.14-15,2013.
    [13] Liu, Y., Lv, Z., Wang, W., “An Improved Generalized-Trend-Diffusion-Based Data Imputation for Steel Industry”, International Journal of Mathematical Problems in Engineering,Vol.10,pp.1-10,2013.
    [14] Qi, F.S., Liu, Z.Q., Yao, C.Y., Lu, B.K., “Numerical Study and Structural Optimization of a Top Combustion Hot Blast Stove”, Advances in Mechanical Engineering, Vol.7,No.2,2014.
    [15] Zetterholm, J., Ji, X.Y., Sundelin, B., Martin, P.M., Wang, C., “Model development of a blast furnace stove”, The 7th International Conference on Applied Energy - ICAE2015, Energy Procedia, Vol. 75, pp.1758-1765, 2015.
    [16] Rieger, J., Weiss, C., Rummer, B., “Modelling and Control of Pollutant Formation in Blast Stoves”, International Journal of Cleaner Production ,Vol.88,pp.254-261,2014.
    [17] Hou, S.F., Luo, Z.H., “Numerical Simulation of Air Flow Distribution in Top Combustion Hot Blast Stove Checker Chamber”, China Metallurgy, Vol.27,No.8,pp.11-13,2017.
    [18] Huang, B.H., Lyu, X.P., “Study on Numerical Simulation of Top Combustion Hot Blast Stove”, Mechanical Engineering, Vol.3,pp.118-120,2020.
    [19] Feng, Y.H., Tang, W.Q., Chen, X.J., “Three Hot Blast Stoves Using ‘One Combustion and Two Blast Hot Interlaced Parallel’ Innovative Technology”, Tianjiin Metallurgy,Vol.2,pp.13-15,2020.
    [20] Gan, Y.F., Jang, J.Y., Wu, T.Y., “3D Dynamic Thermal and Thermomechanical Stress Analysis of a Hot Blast Stove”, Ironmaking & Steelmaking, 2020., doi.org/10.1080/03019233.2019.1647384.
    [21] ANSYS Fluent, A Release 18.2 documentation, ANSYS, Inc.2017.

    下載圖示 校內:2022-06-11公開
    校外:2022-06-11公開
    QR CODE