簡易檢索 / 詳目顯示

研究生: 陳勁愷
Chen, Chin-Kai
論文名稱: 擔載鈣離子之沸石觸媒應用於甘油醚化反應合成聚甘油之研究
Study on Glycerol Oligomers Synthesized from Etherification of Glycerol with Zeolite-Supported Calcium Catalysts
指導教授: 陳炳宏
Chen, Bing-Hung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 143
中文關鍵詞: 醚化反應含浸法ZSM5型沸石甘油聚甘油LTA型沸石
外文關鍵詞: Etherification, Impregnation, Zeolite ZSM5, Glycerol, Polyglycerol, Zeolite LTA
相關次數: 點閱:70下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著世界工業、科技業爆炸性發展,人類大量開採造成能源危機,將引發能源缺乏、環境汙染與溫室效應等問題,因此具有永續、低汙染、乾淨之替代性能源逐漸成為眾所矚目的焦點,而生質柴油更為替代性能源中重要之發展項目之一。但隨生質柴油相關研究日與漸增,轉酯化後不可避免之副產物甘油大量產出,至使其市場趨於飽和,因此尋找甘油之高值化應用為鞏固甘油價格及提升原料經濟價值之最佳解決方式。
    本研究使用Dean-Stark反應系統進行高溫之甘油醚化反應生成目標產物二聚甘油與三聚甘油等寡聚甘油,藉由GC、GC-MS、NMR確定產物組成與定量分析。首先以硫酸及氫氧化鈉進行均相反應測試,藉以確立反應效果、酸鹼催化特性及產物組成,隨後使用ZSM5沸石進行反應並以硝酸鈣改質,實驗參數包括動力學分析、觸媒使用量、改質量與濃度、矽鋁比與擔載活性物等。同時使用XRD、IR、SEM、EDS、TPD、BET、TGA鑑定觸媒特性,探討反應結果與觸媒特性關係,最後利用天然礦物高嶺土合成較低矽鋁比之沸石進行醚化反應性測試與回收再利用效果討論。
    從實驗結果得知,經醚化反應後之產物成分為甘油、二聚甘油、三聚甘油、環狀二聚甘油、環狀三聚甘油及少量副產物如丙烯醛等醛類結構。以改質後Ca/ZSM5進行醚化反應在溫度250~260 ℃、持續反應8小時、觸媒使用量 2wt%可以得到超過85%之甘油轉化率,22%二聚甘油、58%三聚甘油之產物,未改質之低矽沸石LTA可達約65%甘油轉化率、32%二聚甘油、31%三聚甘油。
    本實驗成功鑑定醚化反應之產物成分,並有效的以Ca改質沸石觸媒ZSM5進行催化,並尋找出觸媒最適化條件且輔以儀器分析,最後以性質較鹼之沸石進行比較,探討均相、非均相催化效果之特性及可行性。

    In this study, the zeolite ZSM5 were chosen to catalyze the etherification reaction of glycerol to polyglycerol (mainly, diglycerol + triglycerol) in a Dean-Stark apparatus as a batch reactor. Zeolite ZSM5 was modified by the incipient wetness impregnation method with calcium nitrate to enhance the yield and selectivity. After the modification, the solids were rinsed thoroughly with deionized water and calcined at 500 oC. Zeolitic properties were characterized with XRD, FT-IR, SEM, BET, TGA and TPD. Etherification reaction was tested with different kinds of catalysts: acid homogeneous (sulfuric acid), base homogeneous (NaOH), heterogeneous (e.g. zeolite H-ZSM5, Ca-impregnated zeolite ZSM5 (Ca/ZSM5), as-synthesized zeolite of Linde Type A (zeolite LTA)), and other supported alkaline earth metals (Mg, Sr) were also examined for comparison. The products were analyzed by GC-BID, GC-MS, and 13C-NMR to gather the information of the product mixture (linear and cyclic di-, tri-glycerol). Variables of the catalyzed etherification process, such as catalyst-to-glycerol ratio, catalyst Si/Al ratio, operation temperature, modification concentration and kinetics, were studied in order to optimize the reaction condition. The combined yield and selectivity of polyglycerol (diglycerol + triglycerol) under optimal conditions exceeded 85% and 80% after 6 h of reaction proceeding at 260 ℃ with Ca/ZSM5 catalyst. According to Arrhenius equation, the activation energy of the pseudo-first order reaction was estimated as of 107.71 kJ/mol, confirming the high energy barrier in such catalyzed etherification of glycerol.

    摘要 I Abstract II 致謝 XIII 目錄 XIV 表目錄 1 圖目錄 3 第一章 諸論 9 1-1 前言 9 1-2 研究動機與目的 12 第二章 文獻回顧 14 2-1 聚甘油介紹 14 2-1-1 聚甘油 14 2-1-2 二聚甘油 18 2-1-3 聚甘油之應用 21 2-1-4 甘油與聚甘油價格 24 2-1-5 聚甘油之生成反應 25 2-1-6 聚甘油之成分鑑定 26 2-2 甘油醚化反應觸媒 30 2-2-1 均相觸媒(Homogeneous catalysts) 30 2-2-2 非均相觸媒(Heterogeneous catalysts) 33 2-3 沸石觸媒 38 2-3-1 沸石結構與性質 38 2-3-2 沸石應用 42 2-3-3 觸媒製備方法 45 2-3-4 ZSM5型沸石 46 2-3-5 LTA型沸石 48 第三章 實驗儀器與研究方法 51 3-1 實驗架構 51 3-2 實驗藥品 52 3-3 儀器設備與原理分析 55 3-3-1 聚甘油產率與成分分析 57 3-3-2 觸媒特性分析 61 3-3-3 高溫反應裝置 70 3-4 沸石觸媒製備 71 3-4-1 ZSM5型沸石改質 71 3-4-2 LTA型沸石製備 72 3-5 觸媒催化性能測試 73 3-5-1 甘油醚化反應 73 3-5-2 觸媒重複使用 74 3-6 聚甘油產物分析 75 第四章 結果與討論 76 4-1 聚甘油產物分析 76 4-1-1 GC分析與檢量線製作 76 4-1-2 GC/MS之定性分析 80 4-1-3 13C-NMR之分析 86 4-2均相觸媒反應試驗 92 4-2-1均相酸性觸媒-硫酸 92 4-2-2 均相鹼性觸媒-氫氧化鈉 94 4-3 ZSM5型觸媒改質 97 4-3-1 XRD晶相鑑定 97 4-3-2FTIR傅立葉紅外線光譜分析 102 4-3-3 SEM分析 104 4-3-4 元素分析 107 4-3-5 TPD分析 109 4-3-6 BET分析 111 4-3-7 TGA分析 113 4-4 醚化反應參數探討 114 4-4-1 反應動力學之探討 114 4-4-2 觸媒/甘油比對反應之影響 120 4-4-3 不同含浸量與含浸濃度對反應之影響 121 4-4-4 沸石矽/鋁比對反應之影響 123 4-4-5不同鹼土金屬與其不同型態對反應之影響 124 4-4-6合成不同含鈣量之ZSM5催化性 125 4-5 LTA型沸石觸媒之合成與反應 126 4-5-1 XRD晶相鑑定 126 4-5-2 SEM分析 128 4-5-3 EDS元素分析 129 4-5-4 FTIR傅立葉紅外線光譜分析 130 4-5-5 TPD分析 131 4-5-6 醚化反應催化效果與耐用性測試 132 第五章 結論及未來展望 133 5-1 結論 133 5-2 未來展望 134 參考文獻 135

    Admiral A, Abdullah AZ. Shape Selectivity Effects in Etherification of Glycerol to Diglycerol Isomers in a Solvent-Free Reaction System by Li–Mg/SBA-15 Catalyst. Catalysis Letters, 144, 211-215 (2013)

    Aiello R, Crea F, Nigro E, Testa F, Mostowicz R, Fonseca A, Nagy JB. The influence of alkali cations on the synthesis of ZSM-5 in fluoride medium. Microporous and Mesoporous Materials, 28, 241-259 (1999)

    AIST. Spectral Database for Organic Compounds National Institute of Advanced Industrial Science and Technology (2001)

    Aitzetmüller K, Böhrs M, Arzberger E. Analysis of Polyglycerols and other Polyols from Emulsifiers by HPLC. Fette, Seifen, Anstrichmittel, 81, 436-441 (1979)

    Alkan M, Hopa Ç, Yilmaz Z, Güler H. The effect of alkali concentration and solid/liquid ratio on the hydrothermal synthesis of zeolite NaA from natural kaolinite. Microporous and Mesoporous Materials, 86, 176-184 (2005)

    Armaroli T, Simon LJ, Digne M, Montanari T, Bevilacqua M, Valtchev V, Patarin J, Busca G. Effects of crystal size and Si/Al ratio on the surface properties of H-ZSM-5 zeolites. Applied Catalysis A: General, 306, 78-84 (2006)

    Ayoub M, Abdullah AZ. LiOH-modified montmorillonite K-10 as catalyst for selective glycerol etherification to diglycerol. Catalysis Communications, 34, 22-25 (2013)

    Bagheri S, Julkapli NM, Yehye WA. Catalytic conversion of biodiesel derived raw glycerol to value added products. Renewable and Sustainable Energy Reviews, 41, 113-127 (2015)

    Barrault J, Clacens J-M, Pouilloux Y. Selective oligomerization of glycerol over mesoporous catalysts. Topics in Catalysis, 27, 1-4 (2004)

    Barrault J, Clacens JM, Pouilloux Y. Procedes D'etherification du Glycerol, et Catalyseurs pour la mise en Oeuvre de ces Procedes. French Patent WO 01/98243 (2001)

    Barrault J, Pouilloux Y, Clacens J-M, Vanhove C, Bancquart S. Catalysis and fine chemistry. Catalysis Today, 75, 177-181 (2002)

    Beaerlocher C, McCusker LB, Olson DH. Atlas of Zeolite Framework Types: Structure Commision of the International Zeolite Association (2007)

    Behrens H, Mieth G. Charakterisierung und Applikation von Polyglycerolen und Polyglycerolfettsäuren. Die Nahrung, 28, 815-835 (1984)

    Bekkumm HV, Flanigen EM, Jacobs PA, Jasen JC. Introduction to Zeolite Science and Practice,: ELSEVIER (2001)

    Belver C, Banares Munoz MA, Vicente MA. Chemical Activation of a Kaolinite under Acid and Alkanline Conditions. Chemistry of Materials, 14, 2033-2043 (2002)

    Binkley J, Libarondi M. Comparing the Capabilities of Time-of-Flight and Quadrupole Mass Spectrometers. Solutions for Separation Scientists, 8, 28-33 (2010)

    Brandy S, Tam K, Leung G, Salam C. Zero Waste Biodiesel: Using GlycerinAnd Biomass To Create Renewable Energy. Undergraduate Research Journal, 2, 5-11 (2008)

    Breck DW. Zeolite molecular sieves: structure, chemistry, and use, John Wiley & Sons: (1974)

    Brilliant SD, Hecker AC. Imparting antifogging properties to polyvinyl chloride resins and compositions therefor. U.S. Patent No. 3,558,537 (1971)

    British Petroleum(BP). BP Energy Outlook (2016)

    Brunauer S, Deming LS, Deming WE, Teller E. On a Theory of the van der Waals Adsorption of Gases. J Am Chem Soc, 62, 1723-1732 (1940)

    Chandrasekhar S, Pramada PN. Investigation on the Synthesis of Zeolite NaX from Kerala Kaolin. Journal of Porous Materials, 6, 283-297 (1999)

    Charles G, Clacens J-M, Pouilloux Y, Barrault J. Préparation de diglycérol et triglycérol par polymérisation directe du glycérol en présence de catalyseurs mésoporeux basiques. Oléagineux, Corps gras, Lipides, 10, 74-82 (2003)

    Clacens J-M, Pouilloux Y, Barrault J. Selective etherification of glycerol to polyglycerols over impregnated basic MCM-41 type mesoporous catalysts. Applied Catalysis A: General, 227, 181-190 (2002)

    Clacens JM, Pouilloux Y, Barrault J, Linares C, Goldwasser M. Mesoporous basic catalysts: comparison with alkaline exchange zeolites (basicity and porosity). Application to the selective etherification of glycerol to polyglycerols. 118, 895-902 (1998)

    Clomburg JM, Gonzalez R. Anaerobic fermentation of glycerol: a platform for renewable fuels and chemicals. Trends in biotechnology, 31, 20-28 (2013)

    Cottin K, Clacens JM, Pouilloux Y, Barrault J. Preparation of diglycerol and triglycerol by the direct polymerization of glycerol in the presence of the new solid catalysts. Oléagineux, corps gras, lipides, 5, 407-412 (1998)

    Deutschm J, Eckelt R, Richter M. Sauer heterogen-katalysierte Synthese und Ketalisierung von Diglycerinen. Fahrestreffen Deutcher Katalytiker, 41, 266-267 (2008)

    Du X, Wu E. Porosity of microporous zeolites A, X and ZSM-5 studied by small angle X-ray scattering and nitrogen adsorption. Journal of Physics and Chemistry of Solids, 68, 1692-1699 (2007)

    Dworak A, Watach W, Trzebicka B. Cationic polymerization of glycidol. Polymer structure and polymerization mechanism. Macromolecular Chemistry and Physics, 196, 1963-1970 (1995)

    Frey H, Haag R. Dendritic polyglycerol a new versatile biocompatible material. Reviews in Molecular biotechnology, 90, 257-267 (2002)

    Garti N, Aserin A, Zaidman B. Polyglycerol esters-Optimization and techno-economic evaluation. Journal of the American Oil Chemists' Society, 58, 878-883 (1981)

    Gholami Z, Abdullah AZ, Lee K-T. Dealing with the surplus of glycerol production from biodiesel industry through catalytic upgrading to polyglycerols and other value-added products. Renewable and Sustainable Energy Reviews, 39, 327-341 (2014)

    Gholami Z, Abdullah AZ, Lee KT. Catalytic Etherification of Glycerol to Diglycerol Over Heterogeneous Calcium-Based Mixed-Oxide Catalyst: Reusability and Stability. Chemical Engineering Communications, 202, 1397-1405 (2014)

    Ghosh B, Agrawal DC, Bhatia S. Synthesis of Zeolite A from Calcined Diatomaceous Clay: Optimization Studies. Industrial & Engineering Chemistry Research, 33, 2107-2110 (1994)

    Hamdi A, Nabih K. Alkali Activation of Oil Shale Ash Based Ceramics. E-Journal of Chemistry, 9, 1373-1388 (2012)

    Hattori H. Heterogeneous Basic Catalysis. Chemical Reviews, 95, 537-558 (1995)

    Hazimah AH, Ool TL, Salmiah A. Recovery of glycerol and diglycerol from glycerol pitch. Journal of Oil Palm Research, 15, 1-5 (2003)

    Hoefer R, Krampitz D. Use of nonionic surfactants for preventing the fogging of plastic surfaces and preparations containing these surfactants. U.S. Patent No.5,030,280 (1991)

    IEA. World Energy Outlook. International Energy Agency (2012)

    IEA. International Energy Outlook. International Energy Agency (2013)

    Jakobson G. Diglycerin und höhere Oligomere des Glycerins als Synthesebausteine. Fette, Seifen, Anstrichmittel, 88, 101-106 (1986)

    Khanal SK, Rasmussen M, Shrestha P, Van Leeuwen HJ, Visvanathan C, Liu H. Bioenergy and Biofuel Production from Wastes/Residues of Emerging Biofuel Industries. Water Environment Research, 80, 1625-1647 (2008)

    Kirby F, Nieuwelink AE, Kuipers BW, Kaiser A, Bruijnincx PC, Weckhuysen BM. CaO as drop-in colloidal catalysts for the synthesis of higher polyglycerols. Chemistry, 21, 5101-5109 (2015)

    Kloetstra KR, Laren M, Bekkum H. Binary caesium-lanthanum oxide supported on MCM-41 : A new stable heterogeneous basic catalysts. Journal of the Chemical Society, 93, 1211-1220 (1997)

    Koter R, Ceglowska K. Polish patent No.137, 052 (1986)

    Kraft A. Method for preparing polymers of glycerol with a saponite catalyst. EP Patenet No. 1316577B1 (2005)

    Krisnandi YK, Eckelt R, Schneider M, Martin A, Richter M. Glycerol upgrading over zeolites by batch-reactor liquid-phase oligomerization: heterogeneous versus homogeneous reaction. ChemSusChem, 1, 835-844 (2008)

    Kugbe J, Matsue N, Henmi T. Synthesis of Linde type A zeolite-goethite nanocomposite as an adsorbent for cationic and anionic pollutants. Journal of hazardous materials, 164, 929-935 (2009)

    Lemke DW, Nivens S. Process for preparing polyglycerol and mixed ethers. WO Patent No. 2007092407 (2007)

    Martin A, Richter M. Oligomerization of glycerol - a critical review. European Journal of Lipid Science and Technology, 113, 100-117 (2011)

    Marubishi. Polyhydric alcohol fatty acid esters for polymer additives having excellent
    heat stability, moldability, and improved odor. JP Patent No. 2000,178,229 (1971)

    McBain JW. The Sorption of Gases and Vapours by Solids. The Journal of Physical Chemistry, 37, 149-150 (1933)

    Medeiros MA, Araujo MH, Augusti R, Oliveira LCA, Lago RM. Acid-catalyzed oligomerization of glycerol investigated by electrospray ionization mass spectrometry. Journal of the Brazilian Chemical Society, 20, 1667-1673 (2009)

    Neissner R. Polyglycerine und Fettsäure-Polyglycerinpartialester (Herstellung, Kennzahlen, DC-Trennung). Fette, Seifen, Anstrichmittel, 82, 93-100 (1980)

    Nek NSNM, Abu Bakar Z, Seng Soi H, Idris Z, Kian YS. Glycerol to polyglycerol: Value-addition of biodiesel by-product. MPOB Inf Ser, 462, 1-4 (2010)

    Niwa M, Katada N, Okumura K. Characterization and Design of Zeolite Catalysts : Solid acidity, shape selectivity and loading properties. Springer Science & Business Media, 141 (2010)

    Öhman LO, Ganemi B, Björnbomb E, Rahkamaa K, Keiski RL, Paul J. Catalyst preparation through ion-exchange of zeolite Cu-, Ni-, Pd-, CuNi- and CuPd-ZSM-5. Materials Chemistry and Physics, 73, 263-267 (2002)

    Okado H, Shoji H. Deactivation resistance of ZSM-5-type zeolites containing alkaline earth metals used for methanol conversion. Applied Catalysis, 41, 121-135 (1998)

    Oxford. Silicon Drift Detector (SDD) - X-MaxN: Oxford Instrument

    Park S-H, Liu H, Kleinsorge M, Grey CP, Toby BH, Parise JB. [Li-Si-O]-MFI: A New Microporous Lithosilicate with the MFI Topology. Chemistry of Materials, 16, 2605-2614 (2004)

    Plasman V, Caulier T, Boulos N. Versatile ingredients for personal care: Solvay researchers detail the benefits of using polyglycerol technology in a variety of personal care applications(Polyglycerols): Household & Personal Products Industry (2004)

    Proscanu R, Ganea R, Cursaru D, Matei V, Vasilievici G. Effect of Introduction of Lanthanum Cations in ZSM-5 Crystallization. Revista de Chimie, 65, 1517-1520 (2014)

    Reyes CA, Williams CD, Castellanos Alarcon OM. Synthesis of zeolite lta from thermally treated kaolinite. Revista Facultad de Ingeniería Universidad de Antioquia, 53, 30-40 (2010)

    Richter M, Eckelt R, Martin A, Krisnandi YK. Verfahren zur selektiven Herstellung von linearem Diglycerin. Chemie Ingenieur Technik, 80, 1573-1577 (2008)

    Ruppert AM, Meeldijk JD, Kuipers BW, Erne BH, Weckhuysen BM. Glycerol etherification over highly active CaO-based materials: new mechanistic aspects and related colloidal particle formation. Chemistry, 14, 2016-2024 (2008)

    Sahasrabudhe MR. Chromatographic analysis of polyglycerols and their fatty acid esters. Journal of the American Oil Chemists’ Society, 44, 376-378 (1967)

    Sanhueza V, Kelm U, Cid R. Synthesis of mordenite from diatomite: a case of zeolite synthesis from natural material. Journal of Chemical Technology & Biotechnology, 78, 485-488 (2003)

    Sathupunya M, Gulari E, Wongkasemjit S. Na-A (LTA) zeolite synthesis directly from alumatrane and silatrane by sol-gel microwave techniques. Journal of the European Ceramic Society, 23, 1293-1303 (2003)

    Sayoud N, De Oliveira Vigier K, Cucu T, De Meulenaer B, Fan Z, Lai J, Clacens J-M, Liebens A, Jérôme F. Homogeneously-acid catalyzed oligomerization of glycerol. Green Chem, 17, 4307-4314 (2015)

    Shimadzu. Tracera: Shimadzu Scientific Instruments

    Sivaiah MV, Robles-Manuel S, Valange S, Barrault J. Recent developments in acid and base-catalyzed etherification of glycerol to polyglycerols. Catalysis Today, 198, 305-313 (2012)

    Solvay Chemicals. Polyglycerols-general overview: Belgium (2008)

    Solvay Chemicals. Polyglycerols in Industrial Applications: Belgium (2015)

    Sunder A, Hanselmann R, Frey H, Mülhaupt R. Controlled Synthesis of Hyperbranched Polyglycerols by Ring-Opening Multibranching Polymerization. Macromolecules, 32, 4240-4246 (1999)

    Sunder A, Miilhaupt R, Haag R, Frey H. Hyperbranched polyether polyols a modular approach to complex polymer architectures. Advanced Materaials, 12, 3 (2000)

    Sweeley CC, Bentley R, Makita M, Wells WW. Gas-Liquid Chromatography of Trimethylsilyl Derivatives of Sugars and Related Substances. Journal of the American Chemical Society, 85, 2497-2507 (1963)

    Tsobanakis P. Glycerin - new applications & markets: Biofuels and feed stocks (2007)

    Ushikusa T, Maruyama T, Nhya I, Okada M. Pyrolysis Behaviors and Thermostability of Polyglycerols and Polyglycerol Fatty Acid Esters. Japan Oil Chemists's Society, 39, 314-320 (1990)

    Willard HH, Merritt Jr. LL, Dean JA. Instrumental Methods of Analysis (1988)

    Wilms D, Stiriba S-EF, Holger. Hyperbranched Polyglycerols From the Controlled Synthesis of Biocompatible Polyether Polyols to Multipurpose Applications. Accounts of Chemical research, 43, 129-141 (2010)

    Wittcoff H, Roach JR, Miller SE. Polyglycerols. I. The Identification of Polyglycerol Mixtures by the Procedures of Allylation and Acetonation Isolation of Pure Diglycerol. Journal of the American Chemical Society, 69, 2655-2657 (1947)

    Wittcoff H, Roach JR, Miller SE. Polyglycerols. II. Syntheses of Diglycerol. Journal of the American Chemical Society, 71, 2666-2668 (1949)

    Xu R, Pang W, Yu J, Huo Q, Chen J. Chemistry of Zeolites and Related Porous Materials - Synthesis and Structure: John Wiley & Sons (Asia) Pte Ltd (2007)

    You Y-D, Shie J-L, Chang C-Y, Huang S-H, Pai C-Y, Yu Y-H, Chang CH. Economic Cost Analysis of Biodiesel Production Case in Soybean Oil. Energy & Fuels, 22, 182-189 (2008)

    Zajic J. Kinetics of the polymerisation of glycerol. Sbornı´k vysoke´ sˆkoly chemicko-technologicke´ v praze, 9, 91-101 (1966)

    工業催化. ZSM-5分子篩催化劑介紹: (2012)

    中國城鄉建設粉煤灰利用技術開發中心. 粉煤灰 Coal Ash China: 粉煤灰 (1989)

    王力炯, 史鴻鑫, 項菊萍, 武宏科, 陳力軍, 劉秋平. 聚甘油的鹼催化合成. 雲南化工, 37, 1 (2010)

    王仁浪. 鹼催化劑製備中等聚合度聚甘油工藝研究. 碩士論文, 環境與化學工程學院, 南昌市 (2013)

    王彬, 倪永全. 聚甘油的折光率與聚合度. 無錫輕工大學學報, 19, 3 (2000)

    任春芳, 周立國, 楊電青. 聚甘油羥值測定方法的改進研究. 山東輕工業學院學報, 2 (2007)

    李秉傑, 邱宏明, 王奕凱. 非均相矽催化原理與應用: 渤海堂文化公司 (1988)

    肖伊莎, 汪勇, 張廣文, 歐仕益. 低聚甘油的鹼催化劑製備和分離純化研究. 農業機械, 18 (2012)

    徐如人, 龐文琴, 屠崑崗. 沸石分子篩的結構與合成: 吉林大學出版社 (2004)

    張金廷, 施永誠. 聚合甘油的性質及其應用. 日用化學品科學, 28, 10 (2005)

    雷敏宏 & 吳紀聖. 觸媒化學概論與應用: 五南圖書出版股份有限公司 (2014)

    蔡詩珊. 淺談生質能: 綠基會通訊 (2008)

    鄧進協. 應用 Amberlite IR-120, LTA 及 CAN 沸石觸媒以生產生質柴油之研究. 博士論文, 化學工程系, 台南市 (2013)

    盧文章. 生質柴油技術與建廠實務探討: 工業技術研究院 (2014)

    顧錫芳, 施念康. 聚合甘油分析方法. 日用化學工業, 04 (1986)

    無法下載圖示 校內:2021-08-03公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE