| 研究生: |
李俊霆 Li, Chun-Ting |
|---|---|
| 論文名稱: |
多重協定標籤交換光網路中的多速率系統架構與效能模擬分析 System Configuration and Error Performance Analyses of Multirate Optical MPLS Networks |
| 指導教授: |
黃振發
Huang, Jen-Fa |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 61 |
| 中文關鍵詞: | 多重協定標籤交換 、頻與振幅編碼 、陣列波導光柵 、平衡不完全區組設計碼 、多重擷取干擾 、標籤堆疊 、多速率 |
| 外文關鍵詞: | Multi-protocol label switching (MPLS), spectral-amplitude coding (SAC), arrayed-waveguide gratings (AWGs), balanced incomplete block design (BIBD), label stacking |
| 相關次數: | 點閱:147 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
現今,網際網路已經成為我們的生活中最重要的一部份,而網際網路協定(Internet Protocol, IP)是其中運用最為普遍的協定。然而隨著人們對網際網路的需求越來越大,路由器的負擔也相應增加,在電領域的網路發展已逐漸遇到瓶頸,而光網路因為能提供較大的頻寬而逐漸受到重視。在光網路中,多重協定標籤交換(Multi-Protocol Label Switching, MPLS)是最有效率的協定之一,它以標籤作為封包繞送路徑安排的依據,並簡化了繞送的處理程序,因此提升了網路的效率。近年來,多媒體傳輸需求日益增加,因此在多媒體傳輸中,針對不同資料類型的傳輸需求來提供多速率(Multirate)服務也逐漸受到討論。
在這篇論文中,我們提出了一種在多重協定標籤交換網路中的多速率方法與系統架構,其中結合了頻域振幅編碼(Spectral-Amplitude Coding, SAC)光分碼多工技術,以消除標籤辨識過程中的多重擷取干擾(Multiple-Access Interference, MAI),同時為了降低編碼端的複雜度,選擇以平衡不完全區組設計碼(Balanced Incomplete Block Design, BIBD)作為標籤,並以陣列波導光柵(Arrayed-Waveguide Grating, AWG)來編碼。為了驗證此方法與系統架構的可行性,我們分別以理論分析與電腦模擬來探討,而其中我們考慮了熱雜訊(Thermal Noise)與相位引發強度雜訊(Phase-Induced Intensity Noise, PIIN)所造成的錯誤率。研究結果顯示,此架構可提供給不同傳輸速率的需求,而錯誤率會隨著標籤堆疊數量增加而增加,若要有更好的錯誤率表現,除了提高光訊號功率外可藉由增加標籤的碼長來達成。
Nowadays, internet has become the most important part of our life. Internet protocol (IP) is the most general protocol in the network. With the rapid increasing of information, the processing load increase and the development of internet in electrical domain slow down for the bottleneck. Due to the huge bandwidth that optical network can provide, optical network gets attention. Multi-protocol label switching (MPLS) is one of the most efficient protocols in the optical network. Instead of IP address, packet routing in MPLS network depends on label only and that simplify the routing process. So the efficiency of network is enhanced. Due to the rapid growth of the demand for multimedia transmission, multirate for different transmission request of different data type is needed.
In this thesis, a multirate scheme and the configuration in MPLS network are proposed. To eliminate the multiple-access interference (MAI), a set of spectral- amplitude coding (SAC) labels is used. Moreover, to reduce the system complexity, we choose balanced incomplete block design (BIBD) codes for our system and an arrayed- waveguide grating (AWG) for the label encoder. To investigate the feasibility of the proposed system, the BER performances of numerical analysis and simulation analysis are proposed and the effects of thermal noise and phase-induced intensity noise (PIIN) are taken into account. The results show that the multirate is achieved by the proposed system. BER increase as the number of labels in the label stack increase. Besides raising up the power of the light source, increasing the code length of labels can reach a better performance.
[1] V.G. CERF and R.E. ICAHN, “A Protocol For packet Network Intercommunication,” IEEE Trans. Communications, Vol. Com-22, No. 5, pp. 637-648, May 1974.
[2] Ahmed E. Farghal, Hossam M. H. Shalaby, and Zen Kawasaki, “Multirate Multiservice All-Optical Code Switched GMPLS Core Network Utilizing Multicode Variable-Weight Optical Code-Division Multiplexing,” J. Opt. Commun. Netw., vol. 6, no. 8, pp. 670–683, Aug. 2014.
[3] H. Zimmermann, “OSI Reference Model--The ISO Model of Architecture for Open Systems Interconnection,” IEEE Trans. Communications, vol. COM-28, no. 4, April 1980.
[4] D. Meyer, G. Zobrist, “TCP/IP versus OSI,” IEEE Potentials, vol. 9, Issue-1, Feb. 1990.
[5] S. Savage, D. Wetherall, Anna Karlin, and Tom Anderson, “Network Support for IP Traceback,” IEEE/ACM Transactions on Networking, vol. 9, no. 3, June 2001.
[6] M. Pióro, A. Myslek, A. Jüttner, J. Harmatos, and Á. Szentesi, “Topological Design of MPLS Networks,” Global Telecommunications Conference, GLOBECOM '01. IEEE,vol. 1, 2001.
[7] S. Kumar Das, P. Venkataram, J. Biswas, “MPLS-BGP based LSP setup techniques,” the 28th Annual IEEE International Conference on Local Computer Networks, LCN 2003.
[8] R. Scholtz, “The spread spectrum concept,” IEEE Trans. Communications, vol. 25, no. 8, pp. 748-755, August 1977.
[9] J. Y. Hui, “Pattern Code Modulation and Optical Decoding — A Novel Code-Division Multiplexing Technique for Multifiber Network,” IEEE J. Select. Area Commun., vol. SAC-3, no. 6, pp. 916–27, Nov. 1985.
[10] J. A. Salehi, “Code division multiple-access techniques in optical fiber networks—Part II: Systems performance analysis,” IEEE Trans. Commun., vol. 37, no. 8, pp. 834–842, Aug. 1989.
[11] D. Zaccarin and M. Kavehrad, "An optical CDMA system based on spectral encoding of LED," IEEE Photon. Technol. Lett., vol. 5, pp. 479-482, 1993.
[12] X. Zhou, H. M. H. Shalaby, C. Lu, and T. Cheng, “Code for spectral amplitude coding optical CDMA systems,” Electron. Lett., vol. 36, pp. 728–729, Apr. 13, 2000.
[13] Svetislav V. Maric, and Vicent K. N. Lau, “Multirate Fiber-Optic CDMA: System Design and Performance Analysis,” IEEE J. Lightwave Technol., vol. 16, no. 1, pp. 9-17, Jan. 1998.
[14] Zou Wei, and H. Ghafouri-Shiraz, “Codes for Spectral-Amplitude-Coding Optical CDMA Systems,” IEEE J. Lightwave Technology, vol. 20, no. 8, pp. 1284-1291, Aug. 2002.
[15] I. Anderson, Combinatorial Designs. Chichester, U.K.: Ellis Horwood Ltd., 1990.
[16] H. Takahashi, K. Oda, and H. Toba, “Impact of Crosstalk in an Arrayed-Waveguide Multiplexer on N x N Optical Interconnection,” Journal of Lightwave Technology, vol. 14, no. 6, June 1996.
[17] L.R. Chen, “Technologies for hybrid wavelength/time optical CDMA transmission,” 2001 Canadian conference on Electrical and Computer Engineering, vol. 1, pp. 435-440, 2001.
[18] U. Black, MPLS and Label Switching Networks, 2nd ed., Englewood Cliffs, NJ: Prentice-Hall, 2002.
[19] P. Seddighian, S. Ayotte, J. B. Rosas-Fernindez, J. Penon, S. LaRochelle, L. A. Rusch and Sophie LaRochelle, “Label Stacking in Photonic Packet-Switched Networks With Spectral Amplitude Code Labels,” IEEE J. Lightwave Technology, vol. 25, no. 2, pp. 463-471, Feb. 2007.
[20] Chao-Chin Yang, Jen Fa Huang, and Teng-Chun Hsu, “Differentiated Service Provision in Optical CDMA Network Using Power Control,” IEEE Photon. Technol. Lett., vol.20, no. 20, pp. 1664-1666, Oct. 2008.
[21] E.D.J. Smith, R.J. Blaikie, and D.P. Taylor, “Performance enhancement of spectral-amplitude-coding optical CDMA using pulse-position modulation,” IEEE Transactions on Communications, vol. 46, pp. 1176-1185, Sept. 1998.
[22] Z. Wei, H. M. H. Shalaby, and H. Ghafouri-Shiraz, “Modified quadratic congruence codes for fiber bragg grating based spectral-amplitude-coding optical CDMA systems,” J. Lightwave Technol., vol. 19, no. 9, pp. 1274-1281, September 2001.
[23] Chao-Chin Yang, Jen-Fa Huang, and I-Min Chiu, “Performance Analyses on Hybrid MQC/M-Sequence Coding Over Frequency/Spatial Optical CDMA System,” IEEE Transactions on Communications, vol. 55, no. 1, pp. 40-43, Jan. 2007.
[24] T. Demeechai, “Noise-limited performance of spectral-amplitude-coding optical CDMA in fibre-optic radio highway networks,” IEE Proc. Optoelectronics, vol. 152, no. 5, pp. 269-273, Oct. 2005.
[25] W. Huang and M. Nakagawa, “Nonlinear effect of direct-sequence CDMA in optical transmission,” IEICE Trans. Commun., vol. E78-B, no. 5, pp.702–708, May 1995.
[26] J.F. Huang, C.T. Yen, and T.Y. Li, “Nonlinearity effect of electro-optical modulator response in double spread CDMA radio-over-fiber transmissions”, Optical Fiber Technology, vol. 14, no. 3, pp. 247–258, Feb. 2008.