| 研究生: |
賴謙賢 Lai, Chien-Hsien |
|---|---|
| 論文名稱: |
HnRNP Q1透過調控Aurora-A激脢蛋白轉譯促進大腸直腸癌的腫瘤形成 HnRNP Q1 contributes to tumorigenesis through translational regulation of Aurora-A in colorectal cancer |
| 指導教授: |
洪良宜
Hung, Liang-Yi |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
生物科學與科技學院 - 生物資訊與訊息傳遞研究所 Insitute of Bioinformatics and Biosignal Transduction |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 119 |
| 中文關鍵詞: | 異源性核糖核蛋白Q1 、極光激脢-A 、轉譯 、大腸直腸癌 |
| 外文關鍵詞: | hnRNP Q1, Aurora-A, translation, colorectal cancer |
| 相關次數: | 點閱:97 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
異源性核糖核蛋白Q1 (hnRNP Q1)是一種多功能核糖核酸結合蛋白,負責調節核糖核酸在細胞內的代謝過程。hnRNP Q1在大腸直腸癌中的大量表現已知與細胞增殖有關,然而機制尚不清楚。我們透過RNA免疫沉澱結合次世代定序方法,找到一群與細胞週期相關的基因可能受到hnRNP Q1調控,其中包括極光激脢-A (Aurora-A)。Aurora-A為一致癌基因,參與細胞週期的調控,並與癌細胞內多條訊息傳遞路徑相關。利用生物素標定沉降法以及表面電漿共振儀,我們發現hnRNP Q1可經由本身蛋白上的核糖核酸結合區域2及3結合至Aurora-A的5端非轉譯區。當在大腸直腸癌細胞株內大量表現hnRNP Q1可以增加Aurora-A的蛋白表現但不影響mRNA。利用核糖蛋白S6免疫沉澱法、多核糖體分離及轉譯質體分析,我們確認hnRNP Q1可以促進Aurora-A mRNA的轉譯經由5端依賴性及非依賴性的調控機制。大量表現hnRNP Q1無論在體外或小鼠皮下皆能促進大腸直腸癌細胞的生長,另外在大腸直腸癌組織內我們發現hnRNP Q1的表現與Aurora-A呈正相關性。總結以上,我們首度發現hnRNP Q1是Aurora-A的轉譯調控因子,其在大腸直腸癌細胞的大量表現可能與細胞增殖及引發癌變有關。
HnRNP Q1 is a multifunctional RNA-binding protein involved in RNA metabolic regulation. Overexpressed hnRNP Q1 associated with tumor proliferation in colorectal cancer, however, the molecular mechanism is still unclear. To identify the targets of hnRNP Q1, we performed RNA-IP following high-throughput sequencing. A group of cell cycle-related genes, including Aurora-A kinase, which might be targeted by hnRNP Q1 were identified. Aurora-A is an oncogenic protein involved in regulating cell cycle progression and also in activating multiple signaling pathways in cancer cells. By biotin pull down and biacore assays, we found that hnRNP Q1 can directly bind to the 5’-untranslated region (UTR) of Aurora-A mRNA through the RNA-binding domains 2 and 3 (RBD23). Overexpressed hnRNP Q1 increases Aurora-A protein expression, but not mRNA level. Ribosomal protein S6-IP, polysome fractionation and translatome analysis further confirmed that hnRNP Q1 can enhance the translational efficiency of Aurora-A mRNA. Interestingly, Aurora-A mRNA can be translationally regulated by either cap-dependent or IRES-mediated mechanism. Overexpressed hnRNP Q1 can promote tumor cell proliferation in vitro and tumorigenesis in xenograft animal model, and is positively correlated with Aurora-A in colorectal cancer tissues. Taken together, our data reveal that hnRNP Q1 is a novel trans-acting factor that binds to Aurora-A 5’-UTR to up-regulate its translation, which may increase the cell proliferation and contribute to the tumorigenesis of colorectal cancer.
1.Han SP, Tang YH, Smith R: Functional diversity of the hnRNPs: past, present and perspectives. Biochem J 2010, 430(3):379-392.
2.Krecic AM, Swanson MS: hnRNP complexes: composition, structure, and function. Curr Opin Cell Biol 1999, 11(3):363-371.
3.Chaudhury A, Chander P, Howe PH: Heterogeneous nuclear ribonucleoproteins (hnRNPs) in cellular processes: Focus on hnRNP E1's multifunctional regulatory roles. RNA 2010, 16(8):1449-1462.
4.Geuens T, Bouhy D, Timmerman V: The hnRNP family: insights into their role in health and disease. Hum Genet 2016.
5.Carpenter B, MacKay C, Alnabulsi A, MacKay M, Telfer C, Melvin WT, Murray GI: The roles of heterogeneous nuclear ribonucleoproteins in tumour development and progression. Biochim Biophys Acta 2006, 1765(2):85-100.
6.Kim HJ, Kim NC, Wang YD, Scarborough EA, Moore J, Diaz Z, MacLea KS, Freibaum B, Li S, Molliex A et al: Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature 2013, 495(7442):467-473.
7.Chen HH, Chang JG, Lu RM, Peng TY, Tarn WY: The RNA binding protein hnRNP Q modulates the utilization of exon 7 in the survival motor neuron 2 (SMN2) gene. Mol Cell Biol 2008, 28(22):6929-6938.
8.Cho S, Moon H, Loh TJ, Oh HK, Choy HE, Song WK, Chun JS, Zheng X, Shen H: hnRNP M facilitates exon 7 inclusion of SMN2 pre-mRNA in spinal muscular atrophy by targeting an enhancer on exon 7. Biochim Biophys Acta 2014, 1839(4):306-315.
9.Kashima T, Rao N, David CJ, Manley JL: hnRNP A1 functions with specificity in repression of SMN2 exon 7 splicing. Hum Mol Genet 2007, 16(24):3149-3159.
10.Moursy A, Allain FH, Clery A: Characterization of the RNA recognition mode of hnRNP G extends its role in SMN2 splicing regulation. Nucleic Acids Res 2014, 42(10):6659-6672.
11.Bannai H, Fukatsu K, Mizutani A, Natsume T, Iemura S, Ikegami T, Inoue T, Mikoshiba K: An RNA-interacting protein, SYNCRIP (heterogeneous nuclear ribonuclear protein Q1/NSAP1) is a component of mRNA granule transported with inositol 1,4,5-trisphosphate receptor type 1 mRNA in neuronal dendrites. J Biol Chem 2004, 279(51):53427-53434.
12.Dombert B, Sivadasan R, Simon CM, Jablonka S, Sendtner M: Presynaptic localization of Smn and hnRNP R in axon terminals of embryonic and postnatal mouse motoneurons. PLoS One 2014, 9(10):e110846.
13.Michelotti EF, Michelotti GA, Aronsohn AI, Levens D: Heterogeneous nuclear ribonucleoprotein K is a transcription factor. Mol Cell Biol 1996, 16(5):2350-2360.
14.Ritchie SA, Pasha MK, Batten DJ, Sharma RK, Olson DJ, Ross AR, Bonham K: Identification of the SRC pyrimidine-binding protein (SPy) as hnRNP K: implications in the regulation of SRC1A transcription. Nucleic Acids Res 2003, 31(5):1502-1513.
15.Garneau D, Revil T, Fisette JF, Chabot B: Heterogeneous nuclear ribonucleoprotein F/H proteins modulate the alternative splicing of the apoptotic mediator Bcl-x. J Biol Chem 2005, 280(24):22641-22650.
16.Waggoner SA, Johannes GJ, Liebhaber SA: Depletion of the poly(C)-binding proteins alphaCP1 and alphaCP2 from K562 cells leads to p53-independent induction of cyclin-dependent kinase inhibitor (CDKN1A) and G1 arrest. J Biol Chem 2009, 284(14):9039-9049.
17.Evans JR, Mitchell SA, Spriggs KA, Ostrowski J, Bomsztyk K, Ostarek D, Willis AE: Members of the poly (rC) binding protein family stimulate the activity of the c-myc internal ribosome entry segment in vitro and in vivo. Oncogene 2003, 22(39):8012-8020.
18.Kim JH, Paek KY, Choi K, Kim TD, Hahm B, Kim KT, Jang SK: Heterogeneous nuclear ribonucleoprotein C modulates translation of c-myc mRNA in a cell cycle phase-dependent manner. Mol Cell Biol 2003, 23(2):708-720.
19.Mizutani A, Fukuda M, Ibata K, Shiraishi Y, Mikoshiba K: SYNCRIP, a cytoplasmic counterpart of heterogeneous nuclear ribonucleoprotein R, interacts with ubiquitous synaptotagmin isoforms. J Biol Chem 2000, 275(13):9823-9831.
20.Harris CE, Boden RA, Astell CR: A novel heterogeneous nuclear ribonucleoprotein-like protein interacts with NS1 of the minute virus of mice. J Virol 1999, 73(1):72-80.
21.Mourelatos Z, Abel L, Yong J, Kataoka N, Dreyfuss G: SMN interacts with a novel family of hnRNP and spliceosomal proteins. EMBO J 2001, 20(19):5443-5452.
22.Quaresma AJ, Oyama S, Jr., Barbosa JA, Kobarg J: The acidic domain of hnRNPQ (NSAP1) has structural similarity to Barstar and binds to Apobec1. Biochem Biophys Res Commun 2006, 350(2):288-297.
23.Kanai Y, Dohmae N, Hirokawa N: Kinesin transports RNA: isolation and characterization of an RNA-transporting granule. Neuron 2004, 43(4):513-525.
24.Weidensdorfer D, Stohr N, Baude A, Lederer M, Kohn M, Schierhorn A, Buchmeier S, Wahle E, Huttelmaier S: Control of c-myc mRNA stability by IGF2BP1-associated cytoplasmic RNPs. RNA 2009, 15(1):104-115.
25.Grosset C, Chen CY, Xu N, Sonenberg N, Jacquemin-Sablon H, Shyu AB: A mechanism for translationally coupled mRNA turnover: interaction between the poly(A) tail and a c-fos RNA coding determinant via a protein complex. Cell 2000, 103(1):29-40.
26.Kim TD, Woo KC, Cho S, Ha DC, Jang SK, Kim KT: Rhythmic control of AANAT translation by hnRNP Q in circadian melatonin production. Genes Dev 2007, 21(7):797-810.
27.Cho S, Park SM, Kim TD, Kim JH, Kim KT, Jang SK: BiP internal ribosomal entry site activity is controlled by heat-induced interaction of NSAP1. Mol Cell Biol 2007, 27(1):368-383.
28.Kim DY, Woo KC, Lee KH, Kim TD, Kim KT: hnRNP Q and PTB modulate the circadian oscillation of mouse Rev-erb alpha via IRES-mediated translation. Nucleic Acids Res 2010, 38(20):7068-7078.
29.Xing L, Yao X, Williams KR, Bassell GJ: Negative regulation of RhoA translation and signaling by hnRNP-Q1 affects cellular morphogenesis. Mol Biol Cell 2012, 23(8):1500-1509.
30.Lyabin DN, Nigmatullina LF, Doronin AN, Eliseeva IA, Ovchinnikov LP: Identification of proteins specifically interacting with YB-1 mRNA 3' UTR and the effect of hnRNP Q on YB-1 mRNA translation. Biochemistry (Mosc) 2013, 78(6):651-659.
31.Svitkin YV, Yanagiya A, Karetnikov AE, Alain T, Fabian MR, Khoutorsky A, Perreault S, Topisirovic I, Sonenberg N: Control of translation and miRNA-dependent repression by a novel poly(A) binding protein, hnRNP-Q. PLoS Biol 2013, 11(5):e1001564.
32.Kim DY, Kim W, Lee KH, Kim SH, Lee HR, Kim HJ, Jung Y, Choi JH, Kim KT: hnRNP Q regulates translation of p53 in normal and stress conditions. Cell Death Differ 2013, 20(2):226-234.
33.Lim I, Jung Y, Kim DY, Kim KT: HnRNP Q Has a Suppressive Role in the Translation of Mouse Cryptochrome1. PLoS One 2016, 11(7):e0159018.
34.Williams KR, McAninch DS, Stefanovic S, Xing L, Allen M, Li W, Feng Y, Mihailescu MR, Bassell GJ: hnRNP-Q1 represses nascent axon growth in cortical neurons by inhibiting Gap-43 mRNA translation. Mol Biol Cell 2016, 27(3):518-534.
35.Kim JH, Paek KY, Ha SH, Cho S, Choi K, Kim CS, Ryu SH, Jang SK: A cellular RNA-binding protein enhances internal ribosomal entry site-dependent translation through an interaction downstream of the hepatitis C virus polyprotein initiation codon. Mol Cell Biol 2004, 24(18):7878-7890.
36.Park SM, Paek KY, Hong KY, Jang CJ, Cho S, Park JH, Kim JH, Jan E, Jang SK: Translation-competent 48S complex formation on HCV IRES requires the RNA-binding protein NSAP1. Nucleic Acids Res 2011, 39(17):7791-7802.
37.Chen HH, Yu HI, Chiang WC, Lin YD, Shia BC, Tarn WY: hnRNP Q regulates Cdc42-mediated neuronal morphogenesis. Mol Cell Biol 2012, 32(12):2224-2238.
38.Yoo BC, Hong SH, Ku JL, Kim YH, Shin YK, Jang SG, Kim IJ, Jeong SY, Park JG: Galectin-3 stabilizes heterogeneous nuclear ribonucleoprotein Q to maintain proliferation of human colon cancer cells. Cell Mol Life Sci 2009, 66(2):350-364.
39.Albrethsen J, Knol JC, Piersma SR, Pham TV, de Wit M, Mongera S, Carvalho B, Verheul HM, Fijneman RJ, Meijer GA et al: Subnuclear proteomics in colorectal cancer: identification of proteins enriched in the nuclear matrix fraction and regulation in adenoma to carcinoma progression. Mol Cell Proteomics 2010, 9(5):988-1005.
40.Brenner H, Kloor M, Pox CP: Colorectal cancer. Lancet 2014, 383(9927):1490-1502.
41.Walther A, Johnstone E, Swanton C, Midgley R, Tomlinson I, Kerr D: Genetic prognostic and predictive markers in colorectal cancer. Nature reviews Cancer 2009, 9(7):489-499.
42.Markowitz SD, Bertagnolli MM: Molecular origins of cancer: Molecular basis of colorectal cancer. N Engl J Med 2009, 361(25):2449-2460.
43.Das V, Kalita J, Pal M: Predictive and prognostic biomarkers in colorectal cancer: A systematic review of recent advances and challenges. Biomed Pharmacother 2016, 87:8-19.
44.Goldenson B, Crispino JD: The aurora kinases in cell cycle and leukemia. Oncogene 2015, 34(5):537-545.
45.Kufer TA, Sillje HH, Korner R, Gruss OJ, Meraldi P, Nigg EA: Human TPX2 is required for targeting Aurora-A kinase to the spindle. The Journal of cell biology 2002, 158(4):617-623.
46.Pugacheva EN, Golemis EA: The focal adhesion scaffolding protein HEF1 regulates activation of the Aurora-A and Nek2 kinases at the centrosome. Nat Cell Biol 2005, 7(10):937-946.
47.Hirota T, Kunitoku N, Sasayama T, Marumoto T, Zhang D, Nitta M, Hatakeyama K, Saya H: Aurora-A and an interacting activator, the LIM protein Ajuba, are required for mitotic commitment in human cells. Cell 2003, 114(5):585-598.
48.Seki A, Coppinger JA, Jang CY, Yates JR, Fang G: Bora and the kinase Aurora a cooperatively activate the kinase Plk1 and control mitotic entry. Science 2008, 320(5883):1655-1658.
49.Dutertre S, Cazales M, Quaranta M, Froment C, Trabut V, Dozier C, Mirey G, Bouche JP, Theis-Febvre N, Schmitt E et al: Phosphorylation of CDC25B by Aurora-A at the centrosome contributes to the G2-M transition. J Cell Sci 2004, 117(Pt 12):2523-2531.
50.Yan M, Wang C, He B, Yang M, Tong M, Long Z, Liu B, Peng F, Xu L, Zhang Y et al: Aurora-A Kinase: A Potent Oncogene and Target for Cancer Therapy. Med Res Rev 2016, 36(6):1036-1079.
51.Bischoff JR, Anderson L, Zhu Y, Mossie K, Ng L, Souza B, Schryver B, Flanagan P, Clairvoyant F, Ginther C et al: A homologue of Drosophila aurora kinase is oncogenic and amplified in human colorectal cancers. EMBO J 1998, 17(11):3052-3065.
52.Marumoto T, Zhang D, Saya H: Aurora-A - a guardian of poles. Nature reviews Cancer 2005, 5(1):42-50.
53.Hung LY, Tseng JT, Lee YC, Xia W, Wang YN, Wu ML, Chuang YH, Lai CH, Chang WC: Nuclear epidermal growth factor receptor (EGFR) interacts with signal transducer and activator of transcription 5 (STAT5) in activating Aurora-A gene expression. Nucleic Acids Res 2008, 36(13):4337-4351.
54.Lai CH, Tseng JT, Lee YC, Chen YJ, Lee JC, Lin BW, Huang TC, Liu YW, Leu TH, Chen YP et al: Translational up-regulation of Aurora-A in EGFR-overexpressed cancer. Journal of cellular and molecular medicine 2010, 14(6B):1520-1531.
55.Huang YC, Lee CT, Lee JC, Liu YW, Chen YJ, Tseng JT, Kang JW, Sheu BS, Lin BW, Hung LY: Epigenetic silencing of miR-137 contributes to early colorectal carcinogenesis by impaired Aurora-A inhibition. Oncotarget 2016, 7(47):76852-76866.
56.Zhou H, Kuang J, Zhong L, Kuo WL, Gray JW, Sahin A, Brinkley BR, Sen S: Tumour amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation. Nat Genet 1998, 20(2):189-193.
57.Warner SL, Bearss DJ, Han H, Von Hoff DD: Targeting Aurora-2 kinase in cancer. Molecular cancer therapeutics 2003, 2(6):589-595.
58.Anand S, Penrhyn-Lowe S, Venkitaraman AR: AURORA-A amplification overrides the mitotic spindle assembly checkpoint, inducing resistance to Taxol. Cancer Cell 2003, 3(1):51-62.
59.Marumoto T, Hirota T, Morisaki T, Kunitoku N, Zhang D, Ichikawa Y, Sasayama T, Kuninaka S, Mimori T, Tamaki N et al: Roles of aurora-A kinase in mitotic entry and G2 checkpoint in mammalian cells. Genes Cells 2002, 7(11):1173-1182.
60.D'Assoro AB, Liu T, Quatraro C, Amato A, Opyrchal M, Leontovich A, Ikeda Y, Ohmine S, Lingle W, Suman V et al: The mitotic kinase Aurora--a promotes distant metastases by inducing epithelial-to-mesenchymal transition in ERalpha(+) breast cancer cells. Oncogene 2014, 33(5):599-610.
61.Katsha A, Soutto M, Sehdev V, Peng D, Washington MK, Piazuelo MB, Tantawy MN, Manning HC, Lu P, Shyr Y et al: Aurora kinase A promotes inflammation and tumorigenesis in mice and human gastric neoplasia. Gastroenterology 2013, 145(6):1312-1322 e1311-1318.
62.Shu SK, Liu Q, Coppola D, Cheng JQ: Phosphorylation and activation of androgen receptor by Aurora-A. J Biol Chem 2010, 285(43):33045-33053.
63.Dar AA, Belkhiri A, El-Rifai W: The aurora kinase A regulates GSK-3beta in gastric cancer cells. Oncogene 2009, 28(6):866-875.
64.Briassouli P, Chan F, Savage K, Reis-Filho JS, Linardopoulos S: Aurora-A regulation of nuclear factor-kappaB signaling by phosphorylation of IkappaBalpha. Cancer Res 2007, 67(4):1689-1695.
65.Zheng F, Yue C, Li G, He B, Cheng W, Wang X, Yan M, Long Z, Qiu W, Yuan Z et al: Nuclear AURKA acquires kinase-independent transactivating function to enhance breast cancer stem cell phenotype. Nat Commun 2016, 7:10180.
66.Hsueh KW, Fu SL, Chang CB, Chang YL, Lin CH: A novel Aurora-A-mediated phosphorylation of p53 inhibits its interaction with MDM2. Biochim Biophys Acta 2013, 1834(2):508-515.
67.Liu Q, Kaneko S, Yang L, Feldman RI, Nicosia SV, Chen J, Cheng JQ: Aurora-A abrogation of p53 DNA binding and transactivation activity by phosphorylation of serine 215. J Biol Chem 2004, 279(50):52175-52182.
68.Katayama H, Sasai K, Kawai H, Yuan ZM, Bondaruk J, Suzuki F, Fujii S, Arlinghaus RB, Czerniak BA, Sen S: Phosphorylation by aurora kinase A induces Mdm2-mediated destabilization and inhibition of p53. Nat Genet 2004, 36(1):55-62.
69.Eterno V, Zambelli A, Villani L, Tuscano A, Manera S, Spitaleri A, Pavesi L, Amato A: AurkA controls self-renewal of breast cancer-initiating cells promoting wnt3a stabilization through suppression of miR-128. Sci Rep 2016, 6:28436.
70.Qi D, Wang Q, Yu M, Lan R, Li S, Lu F: Mitotic phosphorylation of SOX2 mediated by Aurora kinase A is critical for the stem-cell like cell maintenance in PA-1 cells. Cell Cycle 2016, 15(15):2009-2018.
71.Katayama H, Sen S: Aurora kinase inhibitors as anticancer molecules. Biochim Biophys Acta 2010, 1799(10-12):829-839.
72.Lacerda R, Menezes J, Romao L: More than just scanning: the importance of cap-independent mRNA translation initiation for cellular stress response and cancer. Cell Mol Life Sci 2016.
73.Pelletier J, Sonenberg N: Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 1988, 334(6180):320-325.
74.Lang KJ, Kappel A, Goodall GJ: Hypoxia-inducible factor-1alpha mRNA contains an internal ribosome entry site that allows efficient translation during normoxia and hypoxia. Mol Biol Cell 2002, 13(5):1792-1801.
75.Yang DQ, Halaby MJ, Zhang Y: The identification of an internal ribosomal entry site in the 5'-untranslated region of p53 mRNA provides a novel mechanism for the regulation of its translation following DNA damage. Oncogene 2006, 25(33):4613-4619.
76.Webb TE, Hughes A, Smalley DS, Spriggs KA: An internal ribosome entry site in the 5' untranslated region of epidermal growth factor receptor allows hypoxic expression. Oncogenesis 2015, 4:e134.
77.Nanbru C, Lafon I, Audigier S, Gensac MC, Vagner S, Huez G, Prats AC: Alternative translation of the proto-oncogene c-myc by an internal ribosome entry site. J Biol Chem 1997, 272(51):32061-32066.
78.Stein I, Itin A, Einat P, Skaliter R, Grossman Z, Keshet E: Translation of vascular endothelial growth factor mRNA by internal ribosome entry: implications for translation under hypoxia. Mol Cell Biol 1998, 18(6):3112-3119.
79.Holcik M, Lefebvre C, Yeh C, Chow T, Korneluk RG: A new internal-ribosome-entry-site motif potentiates XIAP-mediated cytoprotection. Nat Cell Biol 1999, 1(3):190-192.
80.Walters B, Thompson SR: Cap-Independent Translational Control of Carcinogenesis. Front Oncol 2016, 6:128.
81.Hung CY, Yang WB, Wang SA, Hsu TI, Chang WC, Hung JJ: Nucleolin enhances internal ribosomal entry site (IRES)-mediated translation of Sp1 in tumorigenesis. Biochim Biophys Acta 2014, 1843(12):2843-2854.
82.Shi Y, Sharma A, Wu H, Lichtenstein A, Gera J: Cyclin D1 and c-myc internal ribosome entry site (IRES)-dependent translation is regulated by AKT activity and enhanced by rapamycin through a p38 MAPK- and ERK-dependent pathway. J Biol Chem 2005, 280(12):10964-10973.
83.Shi Y, Frost PJ, Hoang BQ, Benavides A, Sharma S, Gera JF, Lichtenstein AK: IL-6-induced stimulation of c-myc translation in multiple myeloma cells is mediated by myc internal ribosome entry site function and the RNA-binding protein, hnRNP A1. Cancer Res 2008, 68(24):10215-10222.
84.Petz M, Them NC, Huber H, Mikulits W: PDGF enhances IRES-mediated translation of Laminin B1 by cytoplasmic accumulation of La during epithelial to mesenchymal transition. Nucleic Acids Res 2012, 40(19):9738-9749.
85.Gu L, Zhu N, Zhang H, Durden DL, Feng Y, Zhou M: Regulation of XIAP translation and induction by MDM2 following irradiation. Cancer Cell 2009, 15(5):363-375.
86.Fu Q, Chen Z, Gong X, Cai Y, Chen Y, Ma X, Zhu R, Jin J: beta-Catenin expression is regulated by an IRES-dependent mechanism and stimulated by paclitaxel in human ovarian cancer cells. Biochem Biophys Res Commun 2015, 461(1):21-27.
87.Holmes B, Lee J, Landon KA, Benavides-Serrato A, Bashir T, Jung ME, Lichtenstein A, Gera J: Mechanistic Target of Rapamycin (mTOR) Inhibition Synergizes with Reduced Internal Ribosome Entry Site (IRES)-mediated Translation of Cyclin D1 and c-MYC mRNAs to Treat Glioblastoma. J Biol Chem 2016, 291(27):14146-14159.
88.Cobbold LC, Wilson LA, Sawicka K, King HA, Kondrashov AV, Spriggs KA, Bushell M, Willis AE: Upregulated c-myc expression in multiple myeloma by internal ribosome entry results from increased interactions with and expression of PTB-1 and YB-1. Oncogene 2010, 29(19):2884-2891.
89.Holcik M: Targeting translation for treatment of cancer--a novel role for IRES? Curr Cancer Drug Targets 2004, 4(3):299-311.
90.Ko CC, Chen YJ, Chen CT, Liu YC, Cheng FC, Hsu KC, Chow LP: Chemical proteomics identifies heterogeneous nuclear ribonucleoprotein (hnRNP) A1 as the molecular target of quercetin in its anti-cancer effects in PC-3 cells. J Biol Chem 2014, 289(32):22078-22089.
91.Komar AA, Hatzoglou M: Exploring Internal Ribosome Entry Sites as Therapeutic Targets. Front Oncol 2015, 5:233.
92.Dobson T, Chen J, Krushel LA: Dysregulating IRES-dependent translation contributes to overexpression of oncogenic Aurora A Kinase. Mol Cancer Res 2013, 11(8):887-900.
93.Chen P, Zhang C, Liu C, Zhang L, Yang C, Chen G, Ma D, Tian Y, Du H: HnRNP A1 is Involved in Deep Vein Thrombosis Patients with Behcet's Disease. EBioMedicine 2016, 6:215-221.
94.Chun Y, Kim R, Lee S: Centromere Protein (CENP)-W Interacts with Heterogeneous Nuclear Ribonucleoprotein (hnRNP) U and May Contribute to Kinetochore-Microtubule Attachment in Mitotic Cells. PLoS One 2016, 11(2):e0149127.
95.Mao Y, Tamura T, Yuki Y, Abe D, Tamada Y, Imoto S, Tanaka H, Homma H, Tagawa K, Miyano S et al: The hnRNP-Htt axis regulates necrotic cell death induced by transcriptional repression through impaired RNA splicing. Cell Death Dis 2016, 7:e2207.
96.Link LA, Howley BV, Hussey GS, Howe PH: hnRNP E1 Protects Chromosomal Integrity by Translational Regulation of Cdc27. Mol Cancer Res 2016.
97.Ingolia NT, Brar GA, Rouskin S, McGeachy AM, Weissman JS: The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments. Nat Protoc 2012, 7(8):1534-1550.
98.Ding NJ, Hung LY: Studying the role of hnRNP Q1 and hnRNP A2/B1 in Aurora-A translation. National Cheng-Kung University; 2012.
99.Chen YJ, Hung LY: Studying the IRES-dependent translational regulation of Aurora-A mRNA. National Cheng-Kung University; 2014.
100.Pyronnet S, Pradayrol L, Sonenberg N: A cell cycle-dependent internal ribosome entry site. Mol Cell 2000, 5(4):607-616.
101.Beretta L, Gingras AC, Svitkin YV, Hall MN, Sonenberg N: Rapamycin blocks the phosphorylation of 4E-BP1 and inhibits cap-dependent initiation of translation. EMBO J 1996, 15(3):658-664.
102.Miglietta G, Cogoi S, Pedersen EB, Xodo LE: GC-elements controlling HRAS transcription form i-motif structures unfolded by heterogeneous ribonucleoprotein particle A1. Sci Rep 2015, 5:18097.
103.Wei R, Liu X, Yu W, Yang T, Cai W, Liu J, Huang X, Xu GT, Zhao S, Yang J et al: Deubiquitinases in cancer. Oncotarget 2015, 6(15):12872-12889.
104.Yin J, Zhu JM, Shen XZ: The role and therapeutic implications of RING-finger E3 ubiquitin ligases in hepatocellular carcinoma. Int J Cancer 2015, 136(2):249-257.
105.Passos DO, Quaresma AJ, Kobarg J: The methylation of the C-terminal region of hnRNPQ (NSAP1) is important for its nuclear localization. Biochem Biophys Res Commun 2006, 346(2):517-525.
106.Pyronnet S, Dostie J, Sonenberg N: Suppression of cap-dependent translation in mitosis. Genes Dev 2001, 15(16):2083-2093.
107.Kunze MM, Benz F, Brauss TF, Lampe S, Weigand JE, Braun J, Richter FM, Wittig I, Brune B, Schmid T: sST2 translation is regulated by FGF2 via an hnRNP A1-mediated IRES-dependent mechanism. Biochim Biophys Acta 2016, 1859(7):848-859.
108.Deo RC, Bonanno JB, Sonenberg N, Burley SK: Recognition of polyadenylate RNA by the poly(A)-binding protein. Cell 1999, 98(6):835-845.
109.Wang X, Tanaka Hall TM: Structural basis for recognition of AU-rich element RNA by the HuD protein. Nat Struct Biol 2001, 8(2):141-145.
110.Hinsby AM, Olsen JV, Bennett KL, Mann M: Signaling initiated by overexpression of the fibroblast growth factor receptor-1 investigated by mass spectrometry. Mol Cell Proteomics 2003, 2(1):29-36.
111.Hresko RC, Mueckler M: Identification of pp68 as the Tyrosine-phosphorylated Form of SYNCRIP/NSAP1. A cytoplasmic RNA-binding protein. J Biol Chem 2002, 277(28):25233-25238.
112.Roy R, Durie D, Li H, Liu BQ, Skehel JM, Mauri F, Cuorvo LV, Barbareschi M, Guo L, Holcik M et al: hnRNPA1 couples nuclear export and translation of specific mRNAs downstream of FGF-2/S6K2 signalling. Nucleic Acids Res 2014, 42(20):12483-12497.
113.Goepfert TM, Adigun YE, Zhong L, Gay J, Medina D, Brinkley WR: Centrosome amplification and overexpression of aurora A are early events in rat mammary carcinogenesis. Cancer Res 2002, 62(14):4115-4122.
114.Tsafrir D, Bacolod M, Selvanayagam Z, Tsafrir I, Shia J, Zeng Z, Liu H, Krier C, Stengel RF, Barany F et al: Relationship of gene expression and chromosomal abnormalities in colorectal cancer. Cancer Res 2006, 66(4):2129-2137.
115.Hughes S, Williams RD, Webb E, Houlston RS: Meta-analysis and pooled re-analysis of copy number changes in colorectal cancer detected by comparative genomic hybridization. Anticancer Res 2006, 26(5A):3439-3444.
116.Comegna M, Succoio M, Napolitano M, Vitale M, D'Ambrosio C, Scaloni A, Passaro F, Zambrano N, Cimino F, Faraonio R: Identification of miR-494 direct targets involved in senescence of human diploid fibroblasts. FASEB J 2014, 28(8):3720-3733.
117.Shi Y, Yang Y, Hoang B, Bardeleben C, Holmes B, Gera J, Lichtenstein A: Therapeutic potential of targeting IRES-dependent c-myc translation in multiple myeloma cells during ER stress. Oncogene 2016, 35(8):1015-1024.