簡易檢索 / 詳目顯示

研究生: 王煜德
Wang, Yu-De
論文名稱: 燃燒合成氮化硼製程開發
Process Development for Combustion Synthesis of Boron Nitride
指導教授: 鍾賢龍
Chung, Shyan-Lung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 87
中文關鍵詞: 氮化硼燃燒合成法
外文關鍵詞: Boron nitride, Combustion synthesis
相關次數: 點閱:77下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究係探討以燃燒合成製備六方晶相氮化硼,主要研究為探討氮化硼合成技術開發與產物純化技術之改進。合成製程技術研究以反應物總重區分為160g級及10kg級合成,其中160g級合成又分為有無保溫兩部分討論,保溫製程為在反應體外圍放置氧化鋁纖維,以延長反應於高溫環境下的時間,有利於提升產物之轉化率。本製程技術的反應物包含氧化硼、鎂粉、及氯化銨和氮氣,以自製鋁箔容器裝填上述之反應物粉體,此製程技術為延續先前本實驗室開發之方法。本製程產物除了氮化硼之外另含有副產物氧化鎂、氧化硼鎂以及元素硼等存在,上述之副產物皆可由酸洗流程去除。由於本實驗室先前開發的製程其產物經由分析後,發現副產物氧化硼鎂的含量過高,導致轉化率過低,因此探討副產物的生成機制,藉由改變反應體的組成比例來減少副產物的生成量。在後處理純化的部分,由於本實驗室原純化過程時間過於攏長,因此提升酸洗溫度,以較短時間可除去更大量的副產物。由於本實驗室原純化技術只能得知轉化率,並無法獲得產物白粉中各物質的含量,因此在分析產物組成方面系利用特定的溶劑來分離出目標溶質,藉由液提的作用可以逐一檢測出產物中的氮化硼、氧化鎂、氧化硼鎂、元素硼之重量比分比。由於本實驗室之原製程每批次最大生產量為1公斤級,為了達成量產氮化硼的最終目標,故放大每批次產量至10公斤級。在10kg級合成方面則以過程中通入氮氣的實驗操作條件,可達最佳的氮化硼產量(4360克)。

    Hexagonal boron nitride powder was synthesized by the combustion synthesis (SHS) method. The SHS processes reported in the present study were divided into two parts depending on reactant weight. In the first part, 160 g reactants were synthesized in the small reactor and we can divide this part into two section depending on whether we do heat preservation or not; in the second part, 10 Kg reactants were synthesized in the mass production reactor. In these two process, the synthesis of h-BN powders used Mg, B2O3, NH4Cl, and nitrogen gas as reactant. The reactant powders were mixed and placed in the perforated aluminum container. Because of a loose and highly porous structure of the powder stack, the N2 can penetrate into reactant easily , and make the nitridation reaction better. So increasing initial N2 pressure can increase conversion and BN yield. The product not only includes main product boron nitride but also by-products MgO, Mg3B2O6 and B is existed .
    The above by-products can be removed by acid treatment . Because of the amount of by-product is too much , the conversion is lower . After observing the formation mechanism of by-product , we adjust the reactant ratio in order to decrease the amount of by-product . In the part of purification treatment , the original acid treatment is used of mixing acid at least 6 hours to remove the by-product but it spends much time , so we increase the treatment temperature . This method can get great effect and shorten the spare time to 1 hour . In the aspect of analysis of the product is used solvent to get rid off the solute , which is only removed by the specific solvent . By the method above , we can calculate the weight percentage of the content in the product , including BN, MgO, Mg3B2O6 and B . In the aspect of 10 Kg reactants , the optimal synthesized condition is inputting the nitrogen gas during the combustion synthesis reaction simultaneously . The maximum productivity of boron nitride is 4360 grams .

    摘要 I Abstract III Extended Abstract V 誌謝 XIV 目錄 XV 表目錄 XIX 圖目錄 XX 第一章 緖論 1 1-1 陶瓷材料 1 1-2 氮化硼性質與應用 2 1-3 氮化硼製備方法 5 1-3-1 工業上氮化硼主要製備方法 5 1-3-2 本研究合成方法-燃燒合成法 7 第二章 原理與研究動機 8 2-1 燃燒合成法 8 2-1-1 熱力學分析 11 2-1-2 動力學分析 13 2-2 燃燒合成氮化物熱力學與動力學探討 15 2-2-1 燃燒合成熱力學 15 2-2-2 燃燒合成動力學 19 2-3 燃燒合成氮化硼文獻探討 21 2-4 研究動機 24 第三章 實驗裝置與藥品 25 3-1 小型反應器裝置 25 3-2 大型反應器裝置 27 3-3 量產反應器裝置 28 3-4 分析儀器 29 3-4-1 X光繞射分析儀 29 3-4-2 場發式電子顯微鏡與能量分散光譜儀 29 3-4-3 粒徑分析儀 30 3-4-4 氮氧分析儀 30 3-5 其他儀器設備 30 3-6 藥品 31 第四章 實驗方法 32 4-1 反應體製備 32 4-2 燃燒合成反應 33 4-2-1 無保溫製程 33 4-2-2 保溫製程 34 4-2-3 鎂粉過量製程 35 4-3 燃燒反應溫度量測 36 4-4 燃燒合成產物轉化率及氮化硼產量分析 37 第五章 結果與討論 39 5-1 160g級氮化硼合成 – 無保溫製程 39 5-2 160g級氮化硼合成 – 保溫製程 44 5-3 保溫與無保溫製程比較 47 5-4改變反應物組成比例-減少副產物生成 50 5-5氮化硼酸洗技術改善 56 5-5-1 改變酸洗溫度 - 減少酸洗時間 57 5-5-2 回收廢液 - 減少酸洗成本 59 5-5-3 改善酸洗流程–定量計算各物質重量百分比 63 5-6 產物白粉過篩分析 66 5-7 氮化硼量產製程開發 - 10公斤級燃燒合成氮化硼 72 第六章 結論 77 第七章 參考文獻 80

    1. 劉宇桓、劉如熹,神奇的陶瓷材料,科學發展月刊,408,2006
    2. Engler M, Lesniak C, Damasch R, Ruisinger B, Eichler J. Hexagonal Boron Nitride(hBN): Applications from Metallurgy to Cosmetics. CFI Ceramic forum international;2007: Göller; 2007.
    3. Paine RT, Narula CK. Synthetic routes to boron nitride. Chem Rev.90(1):73-91, 1990.
    4. Kimura Y, Wakabayashi T, Okada K, Wada T, Nishikawa H. Boron nitride as a lubricant additive. Wear.232(2):199-206, 1999.
    5. Lipp A, Schwetz KA, Hunold K. Hexagonal boron nitride: Fabrication, properties and applications. J Eur Ceram Soc.5(1):3-9, 1989.
    6. The Duel Structure of Boron Nitride.
    (http://chem230.wikia.com/wiki/Trend_3.8)
    7. Sichel E, Miller R, Abrahams M, Buiocchi C. Heat capacity and thermal conductivity of hexagonal pyrolytic boron nitride. Physical Review B.13(10):4607, 1976.
    8. Xu Y, Chung DDL. Increasing the thermal conductivity of boron nitride and aluminum nitride particle epoxy-matrix composites by particle surface treatments. Compos Interfaces.7(4):243-56, 2000.
    9. Wang X, Pakdel A, Zhang J, Weng Q, Zhai T, Zhi C, et al. Large-surface-area BN nanosheets and their utilization in polymeric composites with improved thermal and dielectric properties. Nanoscale Res Lett.7(1):662, 2012.
    10. Zhi C, Bando Y, Terao T, Tang C, Kuwahara H, Golberg D. Boron Nanotube-Polymer Composites: Towards Thermoconductive, Electrically Insulating Polymeric Composites with Boron Nitride Nanotubes as Fillers (Adv. Funct. Mater. 12/2009). Adv Funct Mater.19(12):1857-62, 2009.
    11. Zhi C, Xu Y, Bando Y, Golberg D. Highly thermo-conductive fluid with boron nitride nanofillers. ACS nano. Aug 23;5(8):6571-7, 2011.
    12. Kubota Y, Watanabe K, Tsuda O, Taniguchi T. Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure. Science. Aug 17;317(5840):932-4, 2007.
    13. Zhu YC, Bando Y, Xue DF, Sekiguchi T, Golberg D, Xu FF, et al. New boron nitride whiskers: showing strong ultraviolet and visible light luminescence. J Phys Chem B. May 20;108(20):6193-6, 2004.
    14. Engler M, Lesniak C, Damasch R, Ruisinger B, Eichler J. Hexagonal Boron Nitride (hBN): Applications from Metallurgy to Cosmetics. CFI Ceramic forum international; 2007: Göller; 2007.
    15. Lian G, Zhang X, Zhang S, Liu D, Cui D, Wang Q. Controlled fabrication of ultrathin-shell BN hollow spheres with excellent performance in hydrogen storage and wastewater treatment. Engerg Environ Sci.5(5):7072, 2012.
    16. Ma R, Bando Y, Sato T, Golberg D, Zhu H, Xu C, et al. Synthesis of boron nitride nanofibers and measurement of their hydrogen uptake capacity. Appl Phys Lett.81(27):5225, 2002.
    17. Chopra NG, Luyken RJ, Cherrey K, Crespi VH, Cohen ML, Louie SG, et al. Boron nitride nanotubes. Science. Aug 18;269(5226):966-7, 1995.

    18. Oku T, Narita I, Nishiwaki A, Koi N. Atomic structures, electronic states and hydrogen storage of boron nitride nanocage clusters, nanotubes and nanohorns. Defect Diffus Forum.226-228:113-40, 2004.
    19. Tang C, Bando Y, Huang Y, Zhi C, Golberg D. Synthetic Routes and Formation Mechanisms of Spherical Boron Nitride Nanoparticles. Adv Funct Mater.18(22):3653-61, 2008.
    20. Hoffman D, Doll G, Eklund P. Optical properties of pyrolytic boron nitride in the energy range 0.05—10 eV. Physical review B.30(10):6051, 1984.
    21. Geick R, Perry C, Rupprecht G. Normal modes in hexagonal boron nitride. Phys Rev.146(2):543, 1966.
    22. Takahashi T, Itoh H, Kuroda M. Structure and properties of CVD-BN thick film prepared on carbon steel substrate. J Cryst Growth.53(2):418-22, 1981.
    23. Chase, M.W., Jr., NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951.,
    24. Zhi C, Bando Y, Tan C, Golberg D. Effective precursor for high yield synthesis of pure BN nanotubes. Solid State Commun.135(1-2):67-70, 2005.
    25. Yoon SJ, Jha A. Vapour-phase reduction and the synthesis of boron-based ceramic phases. J Mater Sci.30(3):607-14, 1995.
    26. Deepak FL, Vinod CP, Mukhopadhyay K, Govindaraj A, Rao CNR. Boron nitride nanotubes and nanowires. Chem Phys Lett.353(5-6):345-52, 2002.
    27. Merzhanov AG. Self-propagating high-temperature synthesis: twenty years of search and findings. Combustion and plasma synthesis of high-temperature materials.1-53, 1990.
    28. Moore JJ, Feng H. Combustion synthesis of advanced materials: Part I. Reaction parameters. Prog Mater Sci.39(4):243-73, 1995.
    29. Yeh C L, Combustion Synthesis: Principles and Applications, Encyclopedia of Materials: Science and Technology,1-8,2010
    30. Merzhanov A. SHS on the Pathway to Industrialization. INTERNATIONAL JOURNAL OF SELF PROPAGATING HIGH TEMPERATURE SYNTHESIS.10(2):237-56, 2001.
    31. Varma A, Lebrat J-P. Combustion synthesis of advanced materials. Chem Eng Sci.47(9):2179-94, 1992.
    32. Holt J, Munir Z. Combustion synthesis of titanium carbide: theory and experiment. J Mater Sci.21(1):251-9, 1986.
    33. Munir ZA, Anselmi-Tamburini U. Self-propagating exothermic reactions: the synthesis of high-temperature materials by combustion. Materials Science Reports.3(7):277-365, 1989.
    34. Holt J, Dunmead S. Self-heating synthesis of materials. Annu Rev Mater Sci.21(1):305-34, 1991.
    35. Merzhanov A. The theory of stable homogeneous combustion of condensed substances. Combustion and Flame.13(2):143-56, 1969.
    36. Karpiński J, Porowski S. High pressure thermodynamics of GaN. J Cryst Growth.66(1):11-20, 1984.
    37. Munir ZA, Holt JB. The combustion synthesis of refractory nitrides. J Mater Sci.22(2):710-4, 1987.
    38. Atkinson A, Moulson AJ, Roberts E. Nitridation of High‐Purity Silicon. J Am Ceram Soc.59(7‐8):285-9, 1976.

    39. 黃其清. 燃燒合成製程研究:氮化鋁、氮化硼粉體之合成及鈦+碳 / 鈦+鋁系統之反應機構; 國立成功大學博士論文, 1997.
    40. Amosov AP, Bichurov GV, Bolshova NF, Erin VM, Makarenko AG, Markov YM. Azides as Reagents in SHS Process. International Journal of Self-Propagating High-Temperature Synthesis.1(2):239, 1992.
    41. Hwang C-C, Chung S-L. Combustion synthesis of boron nitride powder. J Mater Res.13(03):680-6, 1998.
    42. Hsu Y.H., Chung S.L.. Combustion synthesis of boron nitride via magnesium reductionusing additives. Ceramics International. 41(1): 1457-1465, 2015.
    43. Mukasyan A.S.. Combustion Synthesis of Silicon Carbide. Properties and Applications of Silicon Carbide: INTECH. p. 289-409; 2011.
    44. Chung S.L., Chang C.W., Aires FJCS. Reaction mechanism in combustion synthesis of α-Si3N4 powder using NaN3. J Mater Res.23(10):2720-6, 2008.
    45. Lee W.C., Chung S.L.. Combustion synthesis of Si3N4 powder. J Mater Res.12(03):805-11, 1997.
    46. Amosov A.P., Bichurov G.V., Markov Y.M., Makarenko A.G.. Production of nitride and carbonitride powders from inorganic azides by self-propagating high-temperature synthesis. Refract Ind Ceram.38(11-12):431-4, 1997.

    下載圖示 校內:2022-06-30公開
    校外:2022-06-30公開
    QR CODE