簡易檢索 / 詳目顯示

研究生: 詹晉瑜
Chang, Chin-Yu
論文名稱: 不同主/客系統於磷光發光元件光電特性之研究
Electro-Optical Characteristics of Phosphorescent Polymer Light-Emitting Devices in Different Host/Guest System
指導教授: 溫添進
Wen, Ten-Chin
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 87
中文關鍵詞: 磷光材料高分子發光二極體
外文關鍵詞: Polymer light emitting diode (PLED), Phosphorescent materials
相關次數: 點閱:66下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   有機發光二極體元件由於可應用於平面顯示技術,具有質輕、自發光、可在室溫下利用濕式製程…等優點,近年來受到廣泛的研究。其中,利用摻雜含有重原子的磷光材料的發光元件特別受到矚目。因為磷光材料中利用重原子擁有強烈的自旋-軌道耦合(spin-orbit coupling)有效地混合單重態和三重態,因此充分利用了激發三重態的能量,可以有效的提高有機電激發光元件的外量子效率。

      本研究中將探討紅色磷光材料-dibenzo[f,h]-quinoxaline Iridium(Ⅲ) (acetylacetonate) [Ir(DBQ)2(acac)]摻雜於高分子發光元件之光電特性研究,內容將分為兩部分:第一部部分將利用電子傳輸材料PBD不同的摻混比例在相同的高分子基材-PVK的條件下,探討在不同的磷光材料摻雜濃度下對元件的影響;第二部分以非共軛型高分子-PVK與共軛型高分子-PF作為基材,在摻雜相同電子傳輸材料-PBD的條件中,製作不同變數的元件探討在不同的磷光材料濃度摻雜下對元件的影響。

     Researches on polymer light-emitting diodes (PLEDs) were focused on the improvement of the efficiency. According to simple statistics, the process of charge injection and recombination in PLEDs generates singlet excitons with quantum efficiency of only 25% limited the efficiency of PLEDs based on fluorescent polymers.

     Phosphorescent materials have attracted great attention due to the potential that can overcome the efficiency limit. It is because that these materials incorporate a heavy metal atom to mix singlet and triplet states by the strong spin-orbit coupling. As a result, a spin forbidden transition may occur allowing an enhanced triplet emission, and therefore it can reach 100% internal quantum efficiency principally.
    In this study, the phosphorescent material, dibenzo[f,h]-quinoxaline iridium(Ⅲ) (acetylacetonate) [Ir(DBQ)2(acac)], was doped into different host systems. We studied the concentrations effects of electron transport material, 2-(4-biphenylyl)-5-(4-tert-butyl-phenyl)-(1,3,4-oxadiazole) (PBD) and Ir(DBQ)2(acac), which were doped into hosts. We also investigated using non-conjugated polymer, ploy(N-vinyl caebarzole)[PVK], and a conjugated polymer, poly (fluorene) based derivative [PF] as host to affect devices performance. From our results, the high efficiency electrophosphorescent light-emitting devices can be developed by suitable Ir complex、host, and dopants concentration.

    目 錄 中文摘要................................................I ABSTRACT................................................II 誌 謝..................................................III 目 錄..................................................IV 圖 目 錄................................................VIII 表目錄..................................................XI 第一章 緒 論............................................1 1-1 前 言..............................................1 1-2 有機發光元件的發展.................................1 1-2-1 有機電激發光元件分類...........................2 1-2-2 OLED與PLED的比較...............................4 1-2-3 有機發光元件發展現況...........................5 1-3 螢光與磷光.........................................8 1-4 電激發光原理.......................................10 1-5 磷光材料摻雜於發光元件之原理與應用.................11 1-6 研究動機與大綱.....................................14 1-6-1 研究動機........................................14 1-6-2 研究大綱........................................15 第二章 電子傳輸材料對於磷光發光元件光電特性影響之研究...23 2-1 前 言..............................................23 2-2 實 驗..............................................25 2-2-1 藥品來源與前處理...............................25 2-2-2 材料特性分析與薄膜表面分析.....................26 2-2-2-1 電化學特性測量分析..........................27 2-2-2-2 紫外光可見光(UV-visible)吸收光譜分析........28 2-2-2-3 光致螢光(Photoluminescence, PL)光譜分析.....28 2-2-2-4 原子力顯微鏡(Atomic Force Microscope)測定...28 2-2-3 元件組裝與特性量測.............................28 2-2-3-1 ITO玻璃前處理...............................28 2-2-3-2 緩衝層成膜方式..............................30 2-2-3-3 發光層溶液配置與成膜方法....................30 2-2-3-4 蒸鍍電極....................................31 2-2-3-5 元件光電特性量測............................31 2-3 結 果 與 討 論.....................................32 2-3-1 材料特性分析...................................32 2-3-2 材料與元件光譜分析.............................34 2-3-3 原子力顯微鏡(Atomic Force Microscope)分析......36 2-3-4 元件電流(I)-電壓(V)-亮度(L)與效率(LE)分析......36 2-4 結 論..............................................40 第三章 磷光染料摻雜於不同高分子基材發光元件特性之研究...52 3-1 前 言..............................................52 3-2 實 驗..............................................54 3-2-1 藥品來源與前處理................................54 3-2-2 材料特性分析與薄膜表面分析......................54 3-2-2-1 電化學特性測量分析..........................55 3-2-2-2 紫外光可見光(UV-visible)吸收光譜分析........56 3-2-2-3 光致螢光(Photoluminescence, PL)光譜分析.....56 3-2-2-4 原子力顯微鏡(Atomic Force Microscope)測定...56 3-2-3 元件組裝與特性量測..............................56 3-2-3-1 ITO玻璃前處理...............................56 3-2-3-2 緩衝層成膜方式..............................58 3-2-3-3 發光層溶液配置與成膜方法....................58 3-2-3-4 蒸鍍電極....................................59 3-2-3-5 元件光電特性量測............................59 3-3 結 果 與 討 論.....................................60 3-3-1 材料特性分析....................................60 3-3-2 材料與元件光譜分析..............................62 3-3-3 原子力顯微鏡(Atomic Force Microscope)分析.......65 3-3-4 元件電流(I)-電壓(V)-亮度(L)與效率(LE)分析.......66 3-4 結 論..............................................69 第四章 論文總結與建議事項...............................82 4-1 論 文 總 結........................................82 4-2 未來工作建議.......................................83 參 考 文 獻.............................................84 自 述...................................................87

    1. Karl Ziemelis Nature, 399, 3, 1999.
    2. RiTdisplay Corporation :
    http://www.ritdisplay.com/
    3. http://www.lc-design.de
    4. Tang, C. W.; VanSlyke, S. A. Appl. Phys. Lett. 51, 913, 1987.
    5. J. H. Burroughes, D.D.C. Bradley, A.R. Brown, R.N. Mark, K. Mackay, R.N.
    Friend, P.L. Burn and A. B. Holmes, Nature, 347, 539,1990.
    6. D. Braun, A.J. Heeger, Appl. Phys. Lett. 58, 1982, 1991.
    7. A. J. Heeger, D. Braun (UNIAX), WO-B 92/16023, 1992.
    8. (a) V. Adamovich, J. Brooks, A. Tamayo, A. M. Alexander, P. I. Djurovich,
    B. W. D’Andrade, C. Adachi, S. R. Forrest and M. E. Thompson, New J.
    Chem., 26, 1171 (2002).(b) L. B. Lin, S. A. Jenekhe, R. H. Young, and P. M.
    Borsenberger, Appl. Phys.Lett.,70, 2052 (1997).(c) D. Z. Garbuzov, V.
    Bulović, P. E. Burrows, and P. E. Forest, Chem. Phys. Lett.,249, 433 (1996).
    (d) Q. Xu, J. Ouyang, Y.Yang, T. Ito and J. Kido, Appl. Phys. Lett., 83,
    4695(2003).(e) Y. Kijima, N. Asai, and S. I. Tamura, Jpn. J. Appl. Phys.,
    38, 5274 (1999).
    9. Skoog, Holler, Nieman, Principles of Instrumental Analysis, 5th Edition,
    Chapter 15.
    10. R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C.
    Taliani, D. D. C. Bradley,D. A. Dos Santos, J. L. Bredas, M. Logdlund, and
    W. R. Salaneck, Nature, 397, 121, 1999.
    11. C. W. Tang, S. A. VanSlyke, and C. H. Chen, J. Appl. Phys. 65, 3610, 1989.
    12. C. H. Chen, C.W. Tang, J. Shi, and K.P. Klubek, Thin Solid Films, 363,
    327, 2000.
    13. Y. Hamada, H. Kanno, T. Tsujioka, H. Takahashi, and T. Usuki, Appl.
    Phys.Lett. 75, 1682, 1999.
    14. M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E.
    Thompson, and S. R. Forrest, Nature, 395, 151, 1998.
    15. (a) Baldo, M. A.; Lamansky, S.; Burrows, P. E.; Thompson, M. E.; Forrest,
    S.R. Appl. Phys. Lett. 75, 4, 1999. (b) Thompson, M. E.; Burrows, P. E.;
    Forrest, S. R. Cur. Opinion Solid State Mater. Sci. 4, 369, 1999.
    16. (a) Wilde, A. P.; King, K. A.; Watts, R. J., J. Phys. Chem. 95, 629, 1991.
    (b)Sprouse, S.; King, K. A.; Spellane, P. J.; Watts, R. J., J. Am. Chem.
    Soc.106, 6647, 1984. (c) Crosby, G. A. J. Chem. Phys. 64, 160, 1967. (d)
    Columbe, M.C.; Hauser, A.; Güdel, H. U. Top. Curr. Chem. 171, 143, 1994.
    17. C. Jiang, W. Yang, J. Peng, S. Xiao, and Y. Cao, Adv. Mater. 6, 537, 2004.
    18. X. Gong, J. C. Ostrowski, G. C. Bazan, D. Moses, A. J. Heeger, M. S. Liu,
    A. K. Y. Jen, Adv. Mater. 15, 45, 2003.
    19. X. Gong, J. C. Ostrowski, G. C. Bazan, D. Moses, A. J. Heeger, M. S. Liu,
    A. K. Y. Jen, Appl. Phys. Lett. 81, 3711. 2002.
    20. J. P. Duan, P. P. Sun, and C. H. Cheng, Adv. Mater. 15, 224, 2003.
    21. X. Y. D. Neher, D. Hertel, and T. K. Daubler, Adv, Mater. 16, 161, 2004.
    22. X. H. Yang and D. Neher, Appl. Phys. Lett. 84, 2476, 2004.
    23. T. H. Kim, D. H. Yoo, J. H. Park, O. O. Park, J. W. Yu, J. K. Kim, Appl.
    Phys. Lett. 86, 86, 2005.
    24. J. Yang, K. C. Gordon, Chem. Phys. Lett. 375, 649, 2003.
    25. S. C. Chang, G. He, F. C. Chen, T. F. Guo, and Y. Yang, Appl. Phys. Lett.
    79, 2088, 2005.
    26. M. Sudhakar, P. I. Djurovich, T. E. Hogen-Esch, and T. E. Thompson, J. Am.
    Chem. Soc. 125, 7796, 2003.
    27. D. F. O'Brien, C. Giebeler, R. B. Fletcher, A. J. Cadby, L. C. Palilis, D.
    G. Lidzey, P. A. Lane, D. D. C. Bradley, W. Blau, Synth. Met. 116, 379,
    2001.
    28. P. A. Lane, L. C. Palilis, D. F. O'Brien, C. Giebeler, A. J. Cadby, D. G.
    Lidzey, A. J. Campbell, W. Blau, D. D. C. Bradley, Phys. Rev. B 63,
    235206, 2001.

    下載圖示 校內:立即公開
    校外:2005-06-24公開
    QR CODE