簡易檢索 / 詳目顯示

研究生: 王國欽
Wang, Guo-Qin
論文名稱: 聚焦式微波合成銅鋅錫硫粉末和光電特性之研究
The Photo-Electrical Characterization of Cu2ZnSnS4 Powders Synthesized by Microwave-Assisted Method
指導教授: 陳昭宇
Chen, Chao-Yu
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 87
中文關鍵詞: 微波合成銅鋅錫硫薄膜太陽能電池低成本鈉鈣玻璃
外文關鍵詞: Microwave-Assisted method, Mo-coated SLG, low-cost, CZTS
相關次數: 點閱:84下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們提出一新穎的方法 -聚焦式微波合成,此製程相較於水熱法製成有著相當快速且容易製程等優勢,並且對於合成氧化物或者其它化合物已經成功應用之,但此製程尚未應用至合成 Cu2ZnSnS4 (CZTS)奈米粒子,故本研究嘗試利用微波合成製備 Cu2ZnSnS4 (CZTS) 奈米粒子,在研究中,先找出一個有系統流程來製備 Cu2ZnSnS4 (CZTS)奈米粒子,進而改變不同的反應溫度、持溫時間和氣體的流量對於材料的影響,對於材料的分析分別使用粉末繞射 (XRD)、拉曼分析(Raman Spectrum)、掃描式電子顯微鏡 (SEM) 等分析之。研究中已經找出不錯的 Cu2ZnSnS4 (CZTS) 奈米粒子,進而將Cu2ZnSnS4 (CZTS)奈米粒子成膜於鈉鈣玻璃 (SLG) 與鉬沉積之鈉鈣玻璃(Mo/SLG) 上,觀察 CZTS 在基板上的光電特性和晶體結構。

    We propose a novel method,Microwave-Assisted method,where advantages including fast and facile for preparing materials. We first synthesize Cu2ZnSnS4 (CZTS)nanoparticles by the method.We synthesize Cu2ZnSnS4 (CZTS) nanoparticles by changing different conditions as reaction temperature,hoding temperature time,annealed temperature,and concentrateion of Ar during annealing.Subsequently,observing effects between materials with those different conditions using XRD,Raman,and SEM.Finally,we find a the best condition to prepare CZTS materials,which then is deposited onto substrate as SLG and Mo-coated SLG.Subsequently,we observed the optical-electrical properties and crystal structures of CZTS-coated substrates.

    中文摘要i 英文摘要ii 誌謝iii 目錄iv 表目錄vi 圖目錄vii 1 介紹1 1.1 太陽能電池歷史與發展1 1.1.1 矽太陽能電池1 1.1.2 二元化合物2 1.1.3 三元化合物2 1.2 太陽能電池工作情形5 1.2.1 空氣質量和太陽光譜5 1.2.2 電流-電壓特性曲線7 1.2.3 其它重要的參數10 1.3 研究動機15 1.3.1 薄膜太陽能電池15 1.3.2 銅銦鎵硫材料探討17 1.3.3 銅銦鎵硫太陽能電池19 1.4 研究目的19 2 文獻回顧22 2.1 真空製程22 2.1.1 濺鍍製程22 2.1.2 蒸鍍製程28 2.2 非真空製程30 2.2.1 電鍍製程30 2.2.2 溶膠凝膠製程36 2.2.3 溶液製程43 2.3 微波合成製程46 3 實驗製程與分析48 3.1 實驗流程與設計48 3.2 實驗藥品53 3.3 分析儀器54 3.3.1 粉末繞射分析54 3.3.2 掃描式電子顯微鏡57 3.3.3 紫外/可見光光譜分析58 3.3.4 拉曼分析59 4 結果與討論61 4.1 改變微波參數(時間) 對粉末的影響61 4.2 改變微波參數(溫度) 對粉末的影響63 4.3 退火時間對粉末的影響66 4.4 氬氣濃度對粉末的影響67 4.5 退火溫度對粉末的影響71 4.5.1 退火溫度(450◦C) 對粉末之影響71 4.5.2 退火溫度(500◦C) 對粉末之影響76 4.6 CZTS 溶液成膜於基板上之探討79 4.6.1 CZTS 溶液成膜於鈉鈣玻璃上之研究79 4.6.2 CZTS 溶液成膜於鉬沉積鈉鈣玻璃基板(Mo/SLG) 上之研究83 5 結論85 參考文獻86

    [1] A. Becquerel Comt. Rend. Acad. Sci. 9, vol. 87, 1839.
    [2] D. Chapin, C. Fuller, and G. Pearson J. Appl. Phys., vol. 25, p. 676, 1954.
    [3] R. C. Chittick, J. H. Alexander, and H. F. Sterling Journal of The Electrochemical Society, vol. 116, no. 1, p. 77, 1969.
    [4] H. Fritzsche Mater. Res. Soc. Symp. Proc., p. 609, 2000.
    [5] T. Suntola in: Proceedings of the 11th EC Photovoltaic Solar Energy Conference,Montreux, p. 977, 1992.
    [6] D. Carlson and C. Wronski Appl. Phys. Lett., vol. 28, p. 671, 1967.
    [7] K. Mitchell, E. Ermer, and D. Rier in: Proceedings of the conference Record on 20th IEEE Photovoltaic Specialists Conference,Las Vegas, p. 1384, 1988.
    [8] A. Goetzberger, C. Hebling, and H.-W. Schock Materials Science and Engineering R, vol. 40, p. 1, 2003.
    [9] Solar spectra, http://rredc.nrel.gov/solar/spectra/, 2000.
    [10] S. M. Sze and K. Ng, Physice of Semiconductor Devices. Hoboken, 2007.
    [11] http://pveducation.org/pvcdrom/solar-cell-operation/quantum-efficiency.
    [12] T. Markvart and L. castaner, Solar cells-materials,manufacture and operation. Elsevier Ltd.,2005.
    [13] M. Green, K. Emery, Y. Hishikawa, and W. Warta Prog. in Photovolt.: Res. Appl., vol. 18, p. 346, 2010.
    [14] I. Visoly-Fisher, S. cohen, A. Ruzin, and D.cahen Adv. Mater., vol. 16, p. 879, 2004.
    [15] Y. Chiba, S. Kijima, H. Sugimoto, Y. Kawaguchi, M. Nagahashi, T. Morimoto, T. Yagioka, T. Miyano, T. Aramoto, Y. Tanaka, H. Hakuma, S. Kuriyagawa, and K. Kushiya in: Proceedings of the 35th IEEE Photovoltaic Specialists Conference, p. 164, 2010.
    [16] B. Pamplin Prog. Cryst. Growth Charact., vol. 3, p. 179, 1981.
    [17] G. Kuhn and H. Neumann Z. Chem., vol. 27, p. 197, 1987.
    [18] S. Schorr Thin Solid Films, vol. 515, p. 5985, 2007.
    [19] D. M. et al. Sol. Energy Mater. and Sol. Cells, vol. 95, p. 1421, 2011.
    [20] B. Andersson Prog. Photovolt: Res. Appl., vol. 8, p. 61, 2000.
    [21] S. Ito, P. Chen, P. Comte, M. K. Nazeeruddin, P. Liska, P. Péchy, and M. Grätzel* Progress in photovoltaic: Res. Appl., vol. 15, p. 603, 2007.
    [22] K. J. et al. Thin Solid Films, vol. 515, p. 5997, 2007.
    [23] K. J. et al. Applied Physics Express 1, vol. 1, p. 041201, 2008.
    [24] K. Wang, O. Gunawan, T. Todorov, B. Shin, S. J. Chey, N. A. Bojarczuk, D. Mitzi, and S. Guha Appl. Phys. Lett., vol. 97, p. 143508, 2010.
    [25] A. Ennaoui, M. Lux-Steiner, A. Weber, D. Abou-Ras, I. Kötschau, H.-W. Schock, R. Schurr, A. Hölzing, S. Jost, R. Hock, T. Voß, J. Schulze, and A. Kirbs Thin Solid Films, vol. 517, p. 2511, 2009.
    [26] K. Tanaka, N. Moritake, and H. Uchiki Solar Energy Materials & Solar Cells, vol. 91, p. 1199, 2007.
    [27] J. Seol, S. Lee, J. Lee, H. Nam, and K. Kim Sol. Energy Mater. Sol. Cells, vol. 75, p. 155, 2003.
    [28] K. Tanaka, N. Moritake, H. Uchiki, and M. Oonuki Solar Energy Materials & Solar Cells, vol. 93, p. 583, 2009.
    [29] T. Todorov and D. B. Mitzi Eur. J. Inorg. Chem., vol. 2010, p. 17, 2010.
    [30] D. A. R. Barkhouse, O. Gunawan, T. Gokmen, T. K. Todorov, and D. B. Mitzi* Prog. Photovolt: Res. Appl., vol. 19, 2011.
    [31] G. J. Wilson, A. S. Matijasevich, D. R. G. Mitchell, J. C. Schulz, and G. D. Will Langmuir, vol. 22, p. 2016, 2006.
    [32] R. S. et al. Thin Solid Films, vol. 517, p. 2465, 2009.
    [33] P. Fernandes, P. Salomé, and A. da Cunha Journal of Alloys and Compounds, vol. 509, p. 7600, 2011.
    [34] H. W. et al. Thin Solid Films, vol. 387, p. 60, 2001.

    下載圖示 校內:2017-08-16公開
    校外:2017-08-16公開
    QR CODE