| 研究生: |
王國欽 Wang, Guo-Qin |
|---|---|
| 論文名稱: |
聚焦式微波合成銅鋅錫硫粉末和光電特性之研究 The Photo-Electrical Characterization of Cu2ZnSnS4 Powders Synthesized by Microwave-Assisted Method |
| 指導教授: |
陳昭宇
Chen, Chao-Yu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 微波合成 、銅鋅錫硫 、薄膜太陽能電池 、低成本 、鈉鈣玻璃 |
| 外文關鍵詞: | Microwave-Assisted method, Mo-coated SLG, low-cost, CZTS |
| 相關次數: | 點閱:84 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們提出一新穎的方法 -聚焦式微波合成,此製程相較於水熱法製成有著相當快速且容易製程等優勢,並且對於合成氧化物或者其它化合物已經成功應用之,但此製程尚未應用至合成 Cu2ZnSnS4 (CZTS)奈米粒子,故本研究嘗試利用微波合成製備 Cu2ZnSnS4 (CZTS) 奈米粒子,在研究中,先找出一個有系統流程來製備 Cu2ZnSnS4 (CZTS)奈米粒子,進而改變不同的反應溫度、持溫時間和氣體的流量對於材料的影響,對於材料的分析分別使用粉末繞射 (XRD)、拉曼分析(Raman Spectrum)、掃描式電子顯微鏡 (SEM) 等分析之。研究中已經找出不錯的 Cu2ZnSnS4 (CZTS) 奈米粒子,進而將Cu2ZnSnS4 (CZTS)奈米粒子成膜於鈉鈣玻璃 (SLG) 與鉬沉積之鈉鈣玻璃(Mo/SLG) 上,觀察 CZTS 在基板上的光電特性和晶體結構。
We propose a novel method,Microwave-Assisted method,where advantages including fast and facile for preparing materials. We first synthesize Cu2ZnSnS4 (CZTS)nanoparticles by the method.We synthesize Cu2ZnSnS4 (CZTS) nanoparticles by changing different conditions as reaction temperature,hoding temperature time,annealed temperature,and concentrateion of Ar during annealing.Subsequently,observing effects between materials with those different conditions using XRD,Raman,and SEM.Finally,we find a the best condition to prepare CZTS materials,which then is deposited onto substrate as SLG and Mo-coated SLG.Subsequently,we observed the optical-electrical properties and crystal structures of CZTS-coated substrates.
[1] A. Becquerel Comt. Rend. Acad. Sci. 9, vol. 87, 1839.
[2] D. Chapin, C. Fuller, and G. Pearson J. Appl. Phys., vol. 25, p. 676, 1954.
[3] R. C. Chittick, J. H. Alexander, and H. F. Sterling Journal of The Electrochemical Society, vol. 116, no. 1, p. 77, 1969.
[4] H. Fritzsche Mater. Res. Soc. Symp. Proc., p. 609, 2000.
[5] T. Suntola in: Proceedings of the 11th EC Photovoltaic Solar Energy Conference,Montreux, p. 977, 1992.
[6] D. Carlson and C. Wronski Appl. Phys. Lett., vol. 28, p. 671, 1967.
[7] K. Mitchell, E. Ermer, and D. Rier in: Proceedings of the conference Record on 20th IEEE Photovoltaic Specialists Conference,Las Vegas, p. 1384, 1988.
[8] A. Goetzberger, C. Hebling, and H.-W. Schock Materials Science and Engineering R, vol. 40, p. 1, 2003.
[9] Solar spectra, http://rredc.nrel.gov/solar/spectra/, 2000.
[10] S. M. Sze and K. Ng, Physice of Semiconductor Devices. Hoboken, 2007.
[11] http://pveducation.org/pvcdrom/solar-cell-operation/quantum-efficiency.
[12] T. Markvart and L. castaner, Solar cells-materials,manufacture and operation. Elsevier Ltd.,2005.
[13] M. Green, K. Emery, Y. Hishikawa, and W. Warta Prog. in Photovolt.: Res. Appl., vol. 18, p. 346, 2010.
[14] I. Visoly-Fisher, S. cohen, A. Ruzin, and D.cahen Adv. Mater., vol. 16, p. 879, 2004.
[15] Y. Chiba, S. Kijima, H. Sugimoto, Y. Kawaguchi, M. Nagahashi, T. Morimoto, T. Yagioka, T. Miyano, T. Aramoto, Y. Tanaka, H. Hakuma, S. Kuriyagawa, and K. Kushiya in: Proceedings of the 35th IEEE Photovoltaic Specialists Conference, p. 164, 2010.
[16] B. Pamplin Prog. Cryst. Growth Charact., vol. 3, p. 179, 1981.
[17] G. Kuhn and H. Neumann Z. Chem., vol. 27, p. 197, 1987.
[18] S. Schorr Thin Solid Films, vol. 515, p. 5985, 2007.
[19] D. M. et al. Sol. Energy Mater. and Sol. Cells, vol. 95, p. 1421, 2011.
[20] B. Andersson Prog. Photovolt: Res. Appl., vol. 8, p. 61, 2000.
[21] S. Ito, P. Chen, P. Comte, M. K. Nazeeruddin, P. Liska, P. Péchy, and M. Grätzel* Progress in photovoltaic: Res. Appl., vol. 15, p. 603, 2007.
[22] K. J. et al. Thin Solid Films, vol. 515, p. 5997, 2007.
[23] K. J. et al. Applied Physics Express 1, vol. 1, p. 041201, 2008.
[24] K. Wang, O. Gunawan, T. Todorov, B. Shin, S. J. Chey, N. A. Bojarczuk, D. Mitzi, and S. Guha Appl. Phys. Lett., vol. 97, p. 143508, 2010.
[25] A. Ennaoui, M. Lux-Steiner, A. Weber, D. Abou-Ras, I. Kötschau, H.-W. Schock, R. Schurr, A. Hölzing, S. Jost, R. Hock, T. Voß, J. Schulze, and A. Kirbs Thin Solid Films, vol. 517, p. 2511, 2009.
[26] K. Tanaka, N. Moritake, and H. Uchiki Solar Energy Materials & Solar Cells, vol. 91, p. 1199, 2007.
[27] J. Seol, S. Lee, J. Lee, H. Nam, and K. Kim Sol. Energy Mater. Sol. Cells, vol. 75, p. 155, 2003.
[28] K. Tanaka, N. Moritake, H. Uchiki, and M. Oonuki Solar Energy Materials & Solar Cells, vol. 93, p. 583, 2009.
[29] T. Todorov and D. B. Mitzi Eur. J. Inorg. Chem., vol. 2010, p. 17, 2010.
[30] D. A. R. Barkhouse, O. Gunawan, T. Gokmen, T. K. Todorov, and D. B. Mitzi* Prog. Photovolt: Res. Appl., vol. 19, 2011.
[31] G. J. Wilson, A. S. Matijasevich, D. R. G. Mitchell, J. C. Schulz, and G. D. Will Langmuir, vol. 22, p. 2016, 2006.
[32] R. S. et al. Thin Solid Films, vol. 517, p. 2465, 2009.
[33] P. Fernandes, P. Salomé, and A. da Cunha Journal of Alloys and Compounds, vol. 509, p. 7600, 2011.
[34] H. W. et al. Thin Solid Films, vol. 387, p. 60, 2001.