簡易檢索 / 詳目顯示

研究生: 張宗宏
Chang, Zong-Hong
論文名稱: 用全漏光導模光學量測對液晶盒極角錨定能之研究
Study on polar anchoring energy of a liquid crystal cell using optical fully leaky guided mode
指導教授: 許家榮
Sheu, Chia-Rong
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 137
中文關鍵詞: 極角錨定能全漏光導模4×4矩陣液晶指向矢
外文關鍵詞: fully leaky guided mode, 4×4 matrix, liquid crystal director, polar anchoring energy
相關次數: 點閱:68下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 光波導技術之一的全漏光導模技術已被使用來探求液晶盒內液晶指向矢詳細分佈情形。此技術主要量測不同入射角度之偏振氦氖雷射光於液晶盒內傳播後的反射率與穿透率,並利用多層光學4×4矩陣的理論模擬來擬合,即可取得未加電場下液晶盒內液晶指向矢方向分佈資訊。同時,此技術也可搭配基於彈性連續體理論所模擬的液晶指向矢傾角空間分佈圖,結合同樣的擬合程序方法,來取得極角錨定能的值。
    本論文主要研究以全漏光導模技術量測液晶盒的極角錨定能及架設整個量測系統。為了預測以全漏光導模技術量測一液晶盒的光學特性,我們利用多層光學4×4矩陣進行模擬,已可以求得與其他液晶研究者模擬的液晶光學特性是一致的。為了獲得外加電場下液晶盒內液晶指向矢的形變結構,我們根據彈性連續體理論對液晶指向矢方程式進行數值分析求解,已可模擬出精確的結果。最後,目前全漏光導模量測系統已成功地架設完成,其量測操作是利用Labview軟體來控制。

    Among numerous optical waveguide techniques, the fully leaky guided mode (FLGM) has been become a powerful technique to explore the liquid crystal (LC) director distribution in LC cells. In the FLGM technique, experimental data are measured from reflectivity and transmissivity of an incident polarized He-Ne laser with respect to different incident angle through LC cells. By means of data fitting according to the theory of 4×4 multilayer matrix optics, we can acquire the information of orientational LC directors in the cells without electric filed applied. Meanwhile, we also get the polar anchoring energy in the same fitting method when considering the LC director distribution based on elastic continuum theory.
    This thesis mainly studies the measurement of polar anchoring energy of a LC cell using FLGM technique and set up a measurement system. First of all, in order to predict the optical characteristics of a LC cell measured by FLGM technique, we use the 4×4 matrix optical method to simulate the optical characteristics. The simulated results consist with the published results by other research groups. In order to obtain the deformed profile of LC orientational directors in LC cells, we numerically analyze and model the accurate results according to elastic continuum theory. Finally, measurement system of FLGM has been completed and automatically controlled with the Labview software.

    摘要……………………………………………………………………….I Abstract…………………………………………………………………..II 誌謝……………………………………………………………………..III 目錄……………………………………………………………………..IV 表目錄………………………………………………………………….VII 圖目錄………………………………………………………………...VIII 符號…………………………………………………………………….XII 第一章 緖論……………………………………………………………..1 1-1 前言…………………………………………..………….…1 1-2 研究動機…………………………..……………………….4 第二章 液晶的基本理論………………………………………………..7 2-1 液晶簡介……………………………..…………………….7 2-2 液晶的歷史…………………..…………………………….8 2-3 液晶的分類……………………..………………………...10 2-3-1 依液晶分子排列分類……..……………………...11 2-3-2 以液晶分子生成原因分類………..……………...17 2-4 液晶的物理性質與光學異方性………………..………...18 2-4-1 光學折射性質……………..……………………...18 2-4-2 介電異方性………….……………………………23 2-4-3 磁化率………………………...……..……………25 2-4-4 彈性常數.……………………..….……………….26 2-4-5 分子排列的秩序參數……………………..…..….27 2-5 液晶的彈性連續體形變理論…………………..………...28 2-6 錨定能理論…………………………..……………...……32 2-7 光波導量測技術……………..……………………….......33 2-7-1光波導量測技術的簡介………..…...……………..33 2-7-2 衰減式全反射技術…..……………………….…..35 2-7-3 半漏光導模技術………………..…………..…….39 2-7-4 全漏光導模技術…………………..………...……41 第三章 全漏光導模(FLGM)技術的架設……………….…………….47 3-1 實驗架設所需設備與元件…………………..……..…….47 3-2 實驗量測系統的架構……………..………………….…..49 3-3 FLGM量測系統實驗步驟………………..………………64 第四章 數值模擬和結果與討論………………………………………68 4-1 4×4矩陣的數值模擬……………..……………………..…68 4-1-1 4×4矩陣的簡介……………………..……………..68 4-1-2 4×4矩陣的推導…………………..…………..……69 4-1-3 轉移矩陣的求法………………..………………...77 4-1-4 反射率與穿透率的求法………………..……...…79 4-1-5 4×4矩陣的模擬結果與討論………………………89 4-2以FLGM技術量測極角錨定能的探討…………..………96 4-2-1 引言…………………..…………………………...96 4-2-2 外加電場作用下的液晶形變自由能密度公式….98 4-2-3以牛頓法求解外加電場下液晶指向矢空間的分佈……………………………………..……...… 101 4-2-4 以有限差分迭代法求解外加電場下液晶指向矢空間的分佈………………………………………..108 4-2-5 液晶指向矢傾角空間分佈圖的模擬與討論…...110 4-2-6 如何以FLGM技術量測液晶盒樣品的極角錨定能…………………………………………...…...117 4-3 FLGM技術實驗量測的結果與討論…………………….120 第五章 結論與未來展望………………………………………..……129 5-1 結論………………………………………..………….....129 5-2 未來展望…………………………………………..…….130 參考文獻………………………………………………………………133

    參考文獻
    [1] F. Yang and J. R. Sambles, "The influence of surface reflectivities on measurement of the torsional anchoring strength of nematic liquid crystals ", J. Appl. Phys., 37, 3998-4007 (1998)
    [2] 松本正一, 角田市良, 劉瑞祥譯, “液晶之基礎與應用,” 國立編譯館, 台北市 (1996)
    [3] D. A. Dunmur, A. Fukuda and G. R. Luckhurst, “ Physical properties of liquid crystals: nematics,” The institution of electrical engineers, London (2001)
    [4] P. Yeh and C. Gu, “Optics of liquid crystal displays,” A Wiley Interscience Publication, New York (1999)
    [5] F. C. Frank, “On the theory of liquid crystals,” Discuss. Faraday Soc., 25, 19-28 (1958)
    [6] J. Nehring and A. Saupe, “On the elastic theory of uniaxial liquid crystals,” J. Chem. Phys., 54, 377-343 (1971)
    [7] P. G. deGennes, “The Physics of Liquid crystals,” Oxford University Press, Oxford (1975)
    [8] S. A. Lien, “Application of simulation to improve the optical performance of liquid crystal displays,” Opt. Eng., 32, 1762-1768 (1993)
    [9] H. Wohler and M. E. Becker, “Numerical modeling of LCD electro-optical performance,” Opto-Electron. Rev., 10, 23-33(2002)
    [10] D. W. Berreman, “Dynamics of liquid-crystal twist cells,” Appl. Phys. Lett., 25, 12-15 (1974)
    [11] G. Barbero, Z. Gabbasova and Yu. A. Kosevich, “on a generalization of the Rapini-papoular expression of the surface free energy for nematic liquid crystals,” J. Phys. II France, 1, 1505-1513 (1991)
    [12] K. R. Welford, J. R. Sambles, and M. G. Clark, “Guided modes and surface plasmon-polaritons observed with a nematic liquid crystal using attenuated total reflection,” Liq. Cryst., 2, 91 (1987)
    [13] S. J. Elston and J. R. Sambles, “The configuration in a ferroelectric liquid crystal cell in terms of a rigid chevron structure,” Mol. Cryst. Liq. Cryst., 200, 167 (1991)
    [14] S. Ito, F. Kremer, T. Fischer and K. Knoll, “Guided optical waves in a ferroelectric liquid crystal layer: a birefringence analysis of molecular orientation on the switching process,” Mol. Cryst. Liq. Cryst., 264, 99 (1995)
    [15] F. Yang and J. R. Sambles, “Optical characterization of liquid crystals by means of half-leaky guided modes,” J. Opt. Soc. Am., 10, 858-866 (1993)
    [16] Hodder, F. Yang and J. R. Sambles, “Optical characterization of the director profile in a ferroelectric liquid crystal cell with homeotropic alignment”, J. Appl. Phys., 89, 5 (2001)
    [17] F. Yang and J. R. Sambles, “optical characterization of a uniaxial material by the polarization-conversion reflectivity technique”, J. Opt. Soc. Am. B, 11, 605-617 (1994)
    [18] F. Yang and J. R. Sambles, “Optical fully leaky mode characterization of a standard liquid-crystal cell,” J. Opt. Soc. Am. B, 16, 488-497 (1999)
    [19] B. T. Hallam, C. V. Brown and J. R. Hallam, “Quantification of the surface- and bulk-order parameters of a homogeneously aligned nematic liquid crystal using fully leaky guided modes,” J. Appl. Phys., 86, 6682-6689 (1999)
    [20] B. T. Hallam and J. R. Sambles, “Optically guided mode study of nematic liquid crystal alignment on a zero-order grating,” Phys. Rev. E., 61, 6699 (2000)
    [21] F. Yang, J. R. Sambles, Y. Dong and H. Gao, “Fully leaky guided wave determination of the polar anchoring energy of a homogeneously aligned nematic liquid crystal,” J. Appl. Phys., 87, 2726-2735 (2000)
    [22] B. T. Hallam, F. Yang and J. R. Sambles, “Quantification of the azimuthal anchoring of a homogeneously aligned nematic liquid crystal using fully-leaky guided modes,” Liq. Cryst., 26, 657-662 (1999)
    [23] F. Yang, L. Ruan and J. R. Sambles, “Homeotropic polar anchoring energy of a nematic liquid crystal using the fully leaky waveguide technique,” J .Appl. Phys., 88, 6175-6182 (2000)
    [24] S. A. Jewell and J. R. Sambles, “Fully leaky guided mode study of the flexoelectric effect and surface polarization in hybrid aligned nematic cells,” J. Appl. Phys., 92, 19-24 (2002)
    [25] N. J. Smith and J. R. Sambles, “Optically resolving dynamic processes in commercial liquid crystal cells,” Appl. Phys. Lett., 77, 2632-2634 (2000)
    [26] N. J. Smith and J. R. Sambles, “Direct optical quantification of backflow in a 90 degrees twisted nematic cell,” Phys. Rev. Lett., 88, 0883011-0883014 (2002)
    [27] F. Yang, Y. Dong, L. Z. Ruan and J. R. Sambles , “Delay effect of switch-on in a supertwisted nematic cell,” Appl. Phys. Lett., 85, 5070-5072 (2004)
    [28] 邱國斌,蔡定平, “金屬表面電漿簡介”, 物理雙月刊, 廿八卷, 二期, 472-485 (2006)
    [29] 吳民耀, 劉威志,“表面電漿子理論與模擬”, 物理雙月刊, 廿八卷, 二期, 486-496 (2006)
    [30] P. Yeh, “Extended Jones matrix method,” J. Opt. Soc. Am., 72, 507-513(1982)
    [31] D. W. Berreman, “Optics in stratified and anisotropic media: 4×4-matrix formulation,” J. Opt. Soc. Am., 62, 502-510 (1972).
    [32] P. Yeh, “Electromagnetic propagation in birefringent layered media,” J. Opt. Soc. Am., 69, 742-756 (1978)
    [33] P. J. Lin-Chung and S. Teitler, “4×4 Matrix formalisms for optics in stratified anisotropic media,” J. Opt. Soc. Am. A, 1, 703-705 (1984).
    [34] Y. Huang, T. X. Wu, and S. T. Wu, “Simulations of liquid-crystal Fabry-Perot etalons by an improved 4×4 matrix method,” J. Appl. Phys., 90, 2490-2495 (2003)
    [35] A. Lien, “Extended Jones matrix representation for the twisted nematic liquid-crystal display at oblique incidence,” Appl. Phys. Lett., 57, 2767-2769 (1990)
    [36] H. Wohler, G. Haas, M. Fritsch, and D. A. Mlynski, “Faster 4×4 matrix method for uniaxial inhomogeneous media,” J. Opt. Soc. Am. A, 5, 1554-1557 (1988).
    [37] 陳鈺雯, “量測與電腦模擬雙穩態反射式聚合物穩定膽固醇液晶的反射特性,” 國立成功大學物理所碩士論文 (2002)
    [38] H. wohler, M. Fritsch, G. Haas, and D. A. Mlynski, “Characteristic matrix method for stratified anisotropic media: optical properties of special configurations,” J. Opt. Soc. Am. A, 8, 536-540 (1991)
    [39] K. Eider, “Light propagation in stratified anisotropic media: orthogonality and symmery properties of the 4×4 matrix formalisms,” J. Opt. Soc. Am. A, 6, 1657-1660 (1989)
    [40] D. Y. K. Ko and J. R. Sambles, “Scattering matrix method for propagation of radiation in stratified media: attenuated total refection studies of liquid crystals,” J. Opt. Soc. Am. A., 5, 1863-1866 (1988)
    [41] C. J. Chen, A. Lien and M. l. Nathan, “Simple method for the calculation of the deformation profiles in chiral nematic liquid crystal cells with asymmetric pretilt,” J. Appl. Phys., 81, 70-73 (1997)
    [42] I. Heynderickx and H. D. Raedt, “Calculation of the director configuration of nematic liquid crystals by the simulated-anneal method,” Phys. Rev. A, 37, 1725-1730 (1988)
    [43] Q. Wang, S. He, F. Yu and N. Huang, “Iterative finite-difference method for calculating the distribution of a liquid-crystal director,” Opt. Eng., 40, 2552-2557 (2001)
    [44] R. N. Thrston and D. W. Berreman, “Equilibrium and stability of liquid-crystal configurations in an electric field,” J. Appl. Phys., 52, 508-509 (1981)
    [45] D. W. Berreman, “Numerical modeling of twisted nematic devices,” Phil. Trans. R. Soc. Lond. A, 309, 203-216 (1983)
    [46] R. H. Self, C. P. Please and T. J. Sluckin, “Deformation of nematic liquid crystals in an electric field,” Euro. J. Appl. Math., 13, 1-23 (2002)
    [47] 楊進丁, 葉官弟和戴任詔, “基礎數值分析-使用Fortran實作,” 高立圖有限公司, 台北市, 365-377 (1994)
    [48] G. Lindfield and J. Penny,黃俊銘編譯, “數值方法-使用MATLAB程式語言,” 全華科技圖書股份有限公司, 台北市, 38-41 (2003)
    [49] 賀容容,袁飛和朱彬, “液晶分子指向矢分布的數值求解,” 成都大學學報(自然科學版), 24卷, 167-170 (2005)
    [50] D. J. Mikulin, D. A. Coley and J. R. Sambles, “Fitting reflectivity data from liquid crystal cells using genetic algorithms,” Liq. Cryst., 22, 301-307 (1997)

    下載圖示 校內:立即公開
    校外:2007-07-26公開
    QR CODE