簡易檢索 / 詳目顯示

研究生: 張簡姵玟
Chien, Pei-Wen Chang
論文名稱: 蜂膠對TGF-β1所引起A549細胞上皮-間質轉化現象之影響
The Effect of Propolis on TGF-β1-Induced Epithelial-Mesenchymal Transition in A549 Cells
指導教授: 王志堯
Wang, Jiu-Yao
共同指導教授: 張文粲
Chang, Wen-Tsan
學位類別: 碩士
Master
系所名稱: 醫學院 - 生物化學暨分子生物學研究所
Department of Biochemistry and Molecular Biology
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 68
中文關鍵詞: 特發性肺纖維化TGF-β1引起的上皮間質轉換蜂膠
外文關鍵詞: Idiopathic pulmonary fibrosis, TGF-β1-induced EMT, propolis
相關次數: 點閱:80下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 特發性肺纖維化(IPF),是一種慢性、漸進式且往往致命的肺間質纖維化疾病。造成的病因不明,但已知IPF的病理特徵是肺泡上皮細胞受傷之後因大量細胞外基質的堆積而導致肺部結構的破壞,而形成纖維母細胞灶。上皮間質轉換(epithelial-mesenchymal transition, EMT) 是指上皮細胞失去自己的特性,轉換成間質細胞的過程。組成纖維母細胞灶的細胞來源部分認為是肺泡第二型上皮細胞透過上皮間質轉換而來。在上皮間質轉換的過程中,上皮細胞失去自己的特性來獲得間質細胞的行為。一些研究發現,在IPF病人蜂窩肺囊腫上皮下層的區域有大量TGF-β1的表現,能夠促使肺泡第二型上皮細胞進行上皮間質轉換而推進IPF的病程。蜂膠是已經廣泛使用數世紀的傳統醫藥品。先前研究發現蜂膠能在動物模式中減緩心臟肝、腎臟和肺纖維化的情形,但詳細的作用機制尚不清楚。在本篇研究中,我們利用無限增殖的肺泡第二型上皮細胞A549觀察蜂膠在TGF-β1誘發EMT上的影響。我們發現TGF-β1在A549細胞誘發EMT的現象有隨劑量變化的情況,包括改變細胞型態、降低E-cadherin和增加N-cadherin表現、細胞骨架F-actin的重排和增加ROS的產量及細胞移動性。預先給予蜂膠,除了能夠避免TGF-β1在24小時所誘發的EMT,像是維持細胞型態、抑制N-cadherin和ROS的增加、降低F-actin的重排及細胞移動性;蜂膠也抑制TGF-β1活化下游的Smad2及AKT。進一步探討可能的功能性成份,咖啡酸苯乙酯和生松素是蜂膠中的活性物質,分別預給這兩種物質發現無法回復TGF-β1所造成細胞型態的改變。預給咖啡酸苯乙酯的組別發現能抑制TGF-β1所增加的N-cadherin和細胞中F-actin的重排,但卻無法回復TGF-β1所造成細胞型態的改變,說明了或許在蜂膠中尚有其他成分參與在抑制EMT的現象,至於是什麼成分則需要更進一步的分析。總結來說,我們發現蜂膠能夠在A549細胞中抑制TGF-β1誘發的EMT,未來在臨床上可能對特發性肺纖維化的預防或治療有些許幫助。

    Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and usually fatal fibrotic lung disease. The etiology is unknown, but the hallmark of IPF is fibroblastic foci, which is formed by alveolar epithelial micro-injuries and followed by deposition of extracellular matrix that results in destruction of the lung architecture. Alveolar epithelial type II cells (type II AECs), which is considered as a sources of myofibroblasts, undergo epithelial-to-mesenchymal transition (EMT) to form fibroblastic foci. During EMT, epithelial cells loss their property to gain the behavior of mesenchymal cells. Evidences show that TGF-β1, which expresses abundant in subepithelial regions of honeycomb cysts of IPF patients, can promote EMT in type II AECs to contribute the progression of IPF. Propolis has been used in folk medicine for centuries. Recent reports show that propolis can prevent fibrosis of heart, liver, kidney and lung in animal model, but the mechanism of propolis in preventing pulmonary fibrosis is still unknown. In this study, we used A549 cells, immortalized type II AECs, to evaluate the effect of propolis on TGF-β1-induced EMT. We found TGF-β1 induced EMT in A549 cells in a dose dependent manner. There were cellular morphological changes, decreased E-cadherin, increased N-cadherin productions, intracellular F-actin rearrangement, increased ROS production, and increased cell motility in TGF-β1-induced EMT in A549 cells. Pretreatment with the natural product of propolis, could maintain the epithelial cells morphology, and reverse the change of N-cadherin, ROS production and decrease cell motility in TGF-β1-treated A549 cells for 24 h. Propolis also prevented TGF-β1-induced Smad2 and Akt activation pathways and Snail expression. Caffeic acid phenethyl ester (CAPE) and pinocembrin are the active components of propolis. Respective pretreatment with these two components of propolis had no inhibitory effect on TGF-β1-induced cellular morphological change in A549 cells. CAPE inhibited the changes of N-cadherin expression and reduced the formation of F-actin, still it could not reverse TGF-β1-induced fibroblast-like morphology. These results suggest that there may have other components in propolis involved in the inhibitory phenomenon of TGF-β1-induced EMT in A549 cells. In summary, our results showed propolis prevented TGF-β1-induced EMT in immotalized type II AECs, which may have the clinical application in the prevention and/or treatment of idiopathic pulmonary fibrosis (IPF).

    摘要 I Abstract III 致謝 V 目錄 VI 圖目錄 VIII 序論 1 一、 特發性肺纖維化 (Idiopathic pulmonary fibrosis, IPF) 1 二、 上皮-間質轉化 (epithelial-mesenchymal transition, EMT) 2 三、 TGF-β1引起的EMT現象 (TGF-β1-induced EMT) 4 四、 TGF-β1在IPF中的角色 6 五、 蜂膠 (Propolis) 7 六、 蜂膠在疾病上的功效 8 七、 研究動機 9 實驗材料與方法 10 一、 實驗材料 10 二、 細胞培養 15 三、 TGF-β1-induced EMT model建立 18 四、 預先處理蜂膠、CAPE或pinocembrin 18 五、 細胞生長型態拍照 18 六、 免疫螢光染色分析 18 七、 F-actin 染色 (Phalloidin staining) 19 八、 細胞爬行能力分析 (Boyden chamber cell migration assay) 20 九、 細胞內ROS測定 21 十、 蛋白質定量 (Bio-Rad Protein Assay Reagent Kit) 21 十一、 西方墨點法 (Western blotting) 21 結果 27 一、 建立TGF-β1誘導的EMT模式 27 二、 以西方墨點法及免疫螢光染色分析EMT相關marker的表現量 27 三、 觀察細胞內細胞骨架的排列與細胞爬行能力 28 四、 分析TGF-β1誘發EMT後細胞中ROS的含量 28 五、 蜂膠在TGF-β1誘發EMT模式的影響 28 六、 利用西方墨點法與免疫螢光染色分析預給蜂膠後對EMT相關marker的表現量 29 七、 觀察預給蜂膠後細胞內細胞骨架的排列與細胞爬行能力 29 八、 預給蜂膠後對細胞中ROS含量的影響 30 九、 TGF-β1誘導EMT時訊息傳導途徑的變化 30 十、 預給蜂膠後對TGF-β1誘導EMT其訊息傳導途徑的影響 30 十一、 轉錄因子在TGF-β1誘導EMT及預給蜂膠組別的表現 31 十二、 分析蜂膠中可能抑制TGF-β1誘導EMT現象的物質 31 討論 33 參考文獻 37 實驗圖 50 自述 68

    Adamson, I.Y., Young, L., and Bowden, D.H. (1988). Relationship of alveolar epithelial injury and repair to the induction of pulmonary fibrosis. Am J Pathol 130, 377-383.
    Aga, H., Shibuya, T., Sugimoto, T., Kurimoto, M., and Nakajima, S. (1994). Isolation and identification of antimicrobial compounds in Brazilian propolis. Bioscience Biotechnology and Biochemistry 58, 945-946.
    Ando, S., Otani, H., Yagi, Y., Kawai, K., Araki, H., Fukuhara, S., and Inagaki, C. (2007). Proteinase-activated receptor 4 stimulation-induced epithelial-mesenchymal transition in alveolar epithelial cells. Respir Res 8, 31.
    ATS/ERS (2002). American Thoracic Society/European Respiratory Society International Multidisciplinary Consensus Classification of the Idiopathic Interstitial Pneumonias. This joint statement of the American Thoracic Society (ATS), and the European Respiratory Society (ERS) was adopted by the ATS board of directors, June 2001 and by the ERS Executive Committee, June 2001. American journal of respiratory and critical care medicine 165, 277-304.
    Bakin, A.V., Tomlinson, A.K., Bhowmick, N.A., Moses, H.L., and Arteaga, C.L. (2000). Phosphatidylinositol 3-kinase function is required for transforming growth factor beta-mediated epithelial to mesenchymal transition and cell migration. J Biol Chem 275, 36803-36810.
    Banh, A., Deschamps, P.A., Vijayan, M.M., Sivak, J.G., and West-Mays, J.A. (2007). The role of Hsp70 and Hsp90 in TGF-beta-induced epithelial-to-mesenchymal transition in rat lens epithelial explants. Mol Vis 13, 2248-2262.
    Barros, M.P., Lemos, M., Maistro, E.L., Leite, M.F., Sousa, J.P., Bastos, J.K., and Andrade, S.F. (2008). Evaluation of antiulcer activity of the main phenolic acids found in Brazilian Green Propolis. J Ethnopharmacol 120, 372-377.
    Baumgartner, K.B., Samet, J.M., Stidley, C.A., Colby, T.V., and Waldron, J.A. (1997). Cigarette smoking: a risk factor for idiopathic pulmonary fibrosis. American journal of respiratory and critical care medicine 155, 242-248.
    Bergeron, A., Soler, P., Kambouchner, M., Loiseau, P., Milleron, B., Valeyre, D., Hance, A.J., and Tazi, A. (2003). Cytokine profiles in idiopathic pulmonary fibrosis suggest an important role for TGF-beta and IL-10. The European respiratory journal : official journal of the European Society for Clinical Respiratory Physiology 22, 69-76.
    Berx, G., and van Roy, F. (2009). Involvement of members of the cadherin superfamily in cancer. Cold Spring Harb Perspect Biol 1, a003129.
    Bhowmick, N.A., Ghiassi, M., Bakin, A., Aakre, M., Lundquist, C.A., Engel, M.E., Arteaga, C.L., and Moses, H.L. (2001). Transforming growth factor-beta1 mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism. Mol Biol Cell 12, 27-36.
    Bitterman, P.B., Rennard, S.I., Keogh, B.A., Wewers, M.D., Adelberg, S., and Crystal, R.G. (1986). Familial idiopathic pulmonary fibrosis. Evidence of lung inflammation in unaffected family members. N Engl J Med 314, 1343-1347.
    Bonniaud, P., Kolb, M., Galt, T., Robertson, J., Robbins, C., Stampfli, M., Lavery, C., Margetts, P.J., Roberts, A.B., and Gauldie, J. (2004). Smad3 null mice develop airspace enlargement and are resistant to TGF-beta-mediated pulmonary fibrosis. J Immunol 173, 2099-2108.
    Buratti, S., Benedetti, S., and Cosio, M.S. (2007). Evaluation of the antioxidant power of honey, propolis and royal jelly by amperometric flow injection analysis. Talanta 71, 1387-1392.
    Cano, A., Perez-Moreno, M.A., Rodrigo, I., Locascio, A., Blanco, M.J., del Barrio, M.G., Portillo, F., and Nieto, M.A. (2000). The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2, 76-83.
    Chen, C.L., Chou, K.J., Lee, P.T., Chen, Y.S., Chang, T.Y., Hsu, C.Y., Huang, W.C., Chung, H.M., and Fang, H.C. (2010). Erythropoietin suppresses epithelial to mesenchymal transition and intercepts Smad signal transduction through a MEK-dependent mechanism in pig kidney (LLC-PK1) cell lines. Exp Cell Res 316, 1109-1118.
    Chen, C.S., Wu, C.H., Lai, Y.C., Lee, W.S., Chen, H.M., Chen, R.J., Chen, L.C., Ho, Y.S., and Wang, Y.J. (2008). NF-kappaB-activated tissue transglutaminase is involved in ethanol-induced hepatic injury and the possible role of propolis in preventing fibrogenesis. Toxicology 246, 148-157.
    Christ, B., and Ordahl, C.P. (1995). Early stages of chick somite development. Anat Embryol (Berl) 191, 381-396.
    Christiansen, J.J., and Rajasekaran, A.K. (2006). Reassessing epithelial to mesenchymal transition as a prerequisite for carcinoma invasion and metastasis. Cancer Res 66, 8319-8326.
    Comijn, J., Berx, G., Vermassen, P., Verschueren, K., van Grunsven, L., Bruyneel, E., Mareel, M., Huylebroeck, D., and van Roy, F. (2001). The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol Cell 7, 1267-1278.
    Coultas, D.B., Zumwalt, R.E., Black, W.C., and Sobonya, R.E. (1994). The epidemiology of interstitial lung diseases. American journal of respiratory and critical care medicine 150, 967-972.
    Coward, W.R., Saini, G., and Jenkins, G. (2010). The pathogenesis of idiopathic pulmonary fibrosis. Ther Adv Respir Dis 4, 367-388.
    Cucoranu, I., Clempus, R., Dikalova, A., Phelan, P.J., Ariyan, S., Dikalov, S., and Sorescu, D. (2005). NAD(P)H oxidase 4 mediates transforming growth factor-beta1-induced differentiation of cardiac fibroblasts into myofibroblasts. Circ Res 97, 900-907.
    Cui, W., Fowlis, D.J., Bryson, S., Duffie, E., Ireland, H., Balmain, A., and Akhurst, R.J. (1996). TGFbeta1 inhibits the formation of benign skin tumors, but enhances progression to invasive spindle carcinomas in transgenic mice. Cell 86, 531-542.
    Cushnie, T.P.T., and Lamb, A.J. (2005). Detection of galangin-induced cytoplasmic membrane damage in Staphylococcus aureus by measuring potassium loss. Journal of Ethnopharmacology 101, 243-248.
    De Castro, S.L. (2001). Propolis: Biological and pharmacological activities. Therapeutic uses of this bee-product. ARBS Annual Review of Biomedical Sciences 3, 49-83.
    Dimov, V., Ivanovska, N., Manolova, N., Bankova, V., Nikolov, N., and Popov, S. (1991). Immunomodulatory action of propolis. Influence on anti-infectious protection and macrophage function. Apidologie 22, 155-162.
    Doi, S., Zou, Y., Togao, O., Pastor, J.V., John, G.B., Wang, L., Shiizaki, K., Gotschall, R., Schiavi, S., Yorioka, N., et al. (2011). Klotho inhibits transforming growth factor-beta1 (TGF-beta1) signaling and suppresses renal fibrosis and cancer metastasis in mice. J Biol Chem 286, 8655-8665.
    Douglas, W.W., Ryu, J.H., and Schroeder, D.R. (2000). Idiopathic pulmonary fibrosis: Impact of oxygen and colchicine, prednisone, or no therapy on survival. American journal of respiratory and critical care medicine 161, 1172-1178.
    Edlund, S., Landstrom, M., Heldin, C.H., and Aspenstrom, P. (2002). Transforming growth factor-beta-induced mobilization of actin cytoskeleton requires signaling by small GTPases Cdc42 and RhoA. Mol Biol Cell 13, 902-914.
    Egan, J.J., Stewart, J.P., Hasleton, P.S., Arrand, J.R., Carroll, K.B., and Woodcock, A.A. (1995). Epstein-Barr virus replication within pulmonary epithelial cells in cryptogenic fibrosing alveolitis. Thorax 50, 1234-1239.
    Felton, V.M., Borok, Z., and Willis, B.C. (2009). N-acetylcysteine inhibits alveolar epithelial-mesenchymal transition. Am J Physiol Lung Cell Mol Physiol 297, L805-812.
    Fiorani, M., Accorsi, A., Blasa, M., Diamantini, G., and Piatti, E. (2006). Flavonoids from Italian multifloral honeys reduce the extracellular ferricyanide in human red blood cells. Journal of Agricultural and Food Chemistry 54, 8328-8334.
    Foster, K.A., Oster, C.G., Mayer, M.M., Avery, M.L., and Audus, K.L. (1998). Characterization of the A549 cell line as a type II pulmonary epithelial cell model for drug metabolism. Exp Cell Res 243, 359-366.
    Gao, M., Zhu, S.Y., Tan, C.B., Xu, B., Zhang, W.C., and Du, G.H. (2010). Pinocembrin protects the neurovascular unit by reducing inflammation and extracellular proteolysis in MCAO rats. J Asian Nat Prod Res 12, 407-418.
    Ghisalberti, E.L. (1979). Propolis: A review. Bee World 60, 59-84.
    Gomez-Caravaca, A.M., Gomez-Romero, M., Arraez-Roman, D., Segura-Carretero, A., and Fernandez-Gutierrez, A. (2006). Advances in the analysis of phenolic compounds in products derived from bees. Journal of Pharmaceutical and Biomedical Analysis 41, 1220-1234.
    Gribbin, J., Hubbard, R.B., Le Jeune, I., Smith, C.J., West, J., and Tata, L.J. (2006). Incidence and mortality of idiopathic pulmonary fibrosis and sarcoidosis in the UK. Thorax 61, 980-985.
    Harari, S., and Caminati, A. (2010). IPF: new insight on pathogenesis and treatment. Allergy 65, 537-553.
    Hardy, K.M., Yatskievych, T.A., Konieczka, J., Bobbs, A.S., and Antin, P.B. (2011). FGF signalling through RAS/MAPK and PI3K pathways regulates cell movement and gene expression in the chicken primitive streak without affecting E-cadherin expression. BMC Dev Biol 11, 20.
    Hashimoto, N., Jin, H., Liu, T., Chensue, S.W., and Phan, S.H. (2004). Bone marrow-derived progenitor cells in pulmonary fibrosis. J Clin Invest 113, 243-252.
    Haslam, P.L., Turton, C.W., Heard, B., Lukoszek, A., Collins, J.V., Salsbury, A.J., and Turner-Warwick, M. (1980). Bronchoalveolar lavage in pulmonary fibrosis: comparison of cells obtained with lung biopsy and clinical features. Thorax 35, 9-18.
    Hay, E.D. (2005). The mesenchymal cell, its role in the embryo, and the remarkable signaling mechanisms that create it. Dev Dyn 233, 706-720.
    Heine, U., Munoz, E.F., Flanders, K.C., Ellingsworth, L.R., Lam, H.Y., Thompson, N.L., Roberts, A.B., and Sporn, M.B. (1987). Role of transforming growth factor-beta in the development of the mouse embryo. J Cell Biol 105, 2861-2876.
    Heldin, C.H., Miyazono, K., and ten Dijke, P. (1997). TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature 390, 465-471.
    Hinz, B., Phan, S.H., Thannickal, V.J., Galli, A., Bochaton-Piallat, M.L., and Gabbiani, G. (2007). The myofibroblast: one function, multiple origins. Am J Pathol 170, 1807-1816.
    Hu, T., Ramachandrarao, S.P., Siva, S., Valancius, C., Zhu, Y., Mahadev, K., Toh, I., Goldstein, B.J., Woolkalis, M., and Sharma, K. (2005). Reactive oxygen species production via NADPH oxidase mediates TGF-beta-induced cytoskeletal alterations in endothelial cells. Am J Physiol Renal Physiol 289, F816-825.
    Huaux, F., Louahed, J., Hudspith, B., Meredith, C., Delos, M., Renauld, J.C., and Lison, D. (1998). Role of interleukin-10 in the lung response to silica in mice. Am J Respir Cell Mol Biol 18, 51-59.
    Hubbard, R., Lewis, S., Richards, K., Johnston, I., and Britton, J. (1996). Occupational exposure to metal or wood dust and aetiology of cryptogenic fibrosing alveolitis. Lancet 347, 284-289.
    Hugo, H., Ackland, M.L., Blick, T., Lawrence, M.G., Clements, J.A., Williams, E.D., and Thompson, E.W. (2007). Epithelial--mesenchymal and mesenchymal--epithelial transitions in carcinoma progression. J Cell Physiol 213, 374-383.
    Illman, S.A., Lehti, K., Keski-Oja, J., and Lohi, J. (2006). Epilysin (MMP-28) induces TGF-beta mediated epithelial to mesenchymal transition in lung carcinoma cells. J Cell Sci 119, 3856-3865.
    Irving, W.L., Day, S., and Johnston, I.D. (1993). Idiopathic pulmonary fibrosis and hepatitis C virus infection. Am Rev Respir Dis 148, 1683-1684.
    Iwai, K., Mori, T., Yamada, N., Yamaguchi, M., and Hosoda, Y. (1994). Idiopathic pulmonary fibrosis. Epidemiologic approaches to occupational exposure. American journal of respiratory and critical care medicine 150, 670-675.
    Iwano, M., Plieth, D., Danoff, T.M., Xue, C., Okada, H., and Neilson, E.G. (2002). Evidence that fibroblasts derive from epithelium during tissue fibrosis. J Clin Invest 110, 341-350.
    Jayachandran, A., Konigshoff, M., Yu, H., Rupniewska, E., Hecker, M., Klepetko, W., Seeger, W., and Eickelberg, O. (2009). SNAI transcription factors mediate epithelial-mesenchymal transition in lung fibrosis. Thorax 64, 1053-1061.
    Johnston, I.D., Prescott, R.J., Chalmers, J.C., and Rudd, R.M. (1997). British Thoracic Society study of cryptogenic fibrosing alveolitis: current presentation and initial management. Fibrosing Alveolitis Subcommittee of the Research Committee of the British Thoracic Society. Thorax 52, 38-44.
    Kasai, H., Allen, J.T., Mason, R.M., Kamimura, T., and Zhang, Z. (2005). TGF-beta1 induces human alveolar epithelial to mesenchymal cell transition (EMT). Respir Res 6, 56.
    Kasper, M., and Haroske, G. (1996). Alterations in the alveolar epithelium after injury leading to pulmonary fibrosis. Histol Histopathol 11, 463-483.
    Katzenstein, A.L., and Myers, J.L. (1998). Idiopathic pulmonary fibrosis: clinical relevance of pathologic classification. American journal of respiratory and critical care medicine 157, 1301-1315.
    Keogh, B.A., and Crystal, R.G. (1982). Alveolitis: the key to the interstitial lung disorders. Thorax 37, 1-10.
    Khalil, N., O'Connor, R.N., Flanders, K.C., and Unruh, H. (1996). TGF-beta 1, but not TGF-beta 2 or TGF-beta 3, is differentially present in epithelial cells of advanced pulmonary fibrosis: an immunohistochemical study. Am J Respir Cell Mol Biol 14, 131-138.
    Khalil, N., Parekh, T.V., O'Connor, R., Antman, N., Kepron, W., Yehaulaeshet, T., Xu, Y.D., and Gold, L.I. (2001). Regulation of the effects of TGF-beta 1 by activation of latent TGF-beta 1 and differential expression of TGF-beta receptors (T beta R-I and T beta R-II) in idiopathic pulmonary fibrosis. Thorax 56, 907-915.
    Kim, J.H., Jang, Y.S., Eom, K.S., Hwang, Y.I., Kang, H.R., Jang, S.H., Kim, C.H., Park, Y.B., Lee, M.G., Hyun, I.G., et al. (2007). Transforming growth factor beta1 induces epithelial-to-mesenchymal transition of A549 cells. J Korean Med Sci 22, 898-904.
    Kim, K.K., Kugler, M.C., Wolters, P.J., Robillard, L., Galvez, M.G., Brumwell, A.N., Sheppard, D., and Chapman, H.A. (2006). Alveolar epithelial cell mesenchymal transition develops in vivo during pulmonary fibrosis and is regulated by the extracellular matrix. Proc Natl Acad Sci U S A 103, 13180-13185.
    Kinnula, V.L. (2008). Redox imbalance and lung fibrosis. Antioxid Redox Signal 10, 249-252.
    Kinnula, V.L., and Myllarniemi, M. (2008). Oxidant-antioxidant imbalance as a potential contributor to the progression of human pulmonary fibrosis. Antioxid Redox Signal 10, 727-738.
    Kondo, M., Cubillo, E., Tobiume, K., Shirakihara, T., Fukuda, N., Suzuki, H., Shimizu, K., Takehara, K., Cano, A., Saitoh, M., et al. (2004). A role for Id in the regulation of TGF-beta-induced epithelial-mesenchymal transdifferentiation. Cell Death Differ 11, 1092-1101.
    Kuhn, C., 3rd, Boldt, J., King, T.E., Jr., Crouch, E., Vartio, T., and McDonald, J.A. (1989). An immunohistochemical study of architectural remodeling and connective tissue synthesis in pulmonary fibrosis. Am Rev Respir Dis 140, 1693-1703.
    Kuwano, K., Nomoto, Y., Kunitake, R., Hagimoto, N., Matsuba, T., Nakanishi, Y., and Hara, N. (1997). Detection of adenovirus E1A DNA in pulmonary fibrosis using nested polymerase chain reaction. The European respiratory journal : official journal of the European Society for Clinical Respiratory Physiology 10, 1445-1449.
    Lamouille, S., and Derynck, R. (2007). Cell size and invasion in TGF-beta-induced epithelial to mesenchymal transition is regulated by activation of the mTOR pathway. J Cell Biol 178, 437-451.
    Lawrence, M.G., Veveris-Lowe, T.L., Whitbread, A.K., Nicol, D.L., and Clements, J.A. (2007). Epithelial-mesenchymal transition in prostate cancer and the potential role of kallikrein serine proteases. Cells Tissues Organs 185, 111-115.
    Li, M., Krishnaveni, M.S., Li, C., Zhou, B., Xing, Y., Banfalvi, A., Li, A., Lombardi, V., Akbari, O., Borok, Z., et al. (2011). Epithelium-specific deletion of TGF-beta receptor type II protects mice from bleomycin-induced pulmonary fibrosis. J Clin Invest 121, 277-287.
    Li, Y., Zhang, J., Fang, L., Luo, P., Peng, J., and Du, X. (2010). Lefty A attenuates the TGF-beta1-induced epithelial to mesenchymal transition of human renal proximal epithelial tubular cells. Mol Cell Biochem 339, 263-270.
    Line, B.R., Fulmer, J.D., Reynolds, H.Y., Roberts, W.C., Jones, A.E., Harris, E.K., and Crystal, R.G. (1978). Gallium-67 citrate scanning in the staging of idiopathic pulmonary fibrosis: Correlation and physiologic and morphologic features and bronchoalveolar lavage. Am Rev Respir Dis 118, 355-365.
    Locascio, A., and Nieto, M.A. (2001). Cell movements during vertebrate development: integrated tissue behaviour versus individual cell migration. Curr Opin Genet Dev 11, 464-469.
    Maeda, M., Johnson, K.R., and Wheelock, M.J. (2005). Cadherin switching: essential for behavioral but not morphological changes during an epithelium-to-mesenchyme transition. J Cell Sci 118, 873-887.
    Mapel, D.W., Samet, J.M., and Coultas, D.B. (1996). Corticosteroids and the treatment of idiopathic pulmonary fibrosis. Past, present, and future. Chest 110, 1058-1067.
    Marcucci, M.C. (1995). Propolis: chemical composition, biological properties and therapeutic activity. Apidologie 26, 83-99.
    Marcucci, M.C., Ferreres, F., Garcia-Viguera, C., Bankova, V.S., De Castro, S.L., Dantas, A.P., Valente, P.H., and Paulino, N. (2001). Phenolic compounds from Brazilian propolis with pharmacological activities. J Ethnopharmacol 74, 105-112.
    Marmai, C., Sutherland, R.E., Kim, K.K., Dolganov, G.M., Fang, X., Kim, S.S., Jiang, S., Golden, J.A., Hoopes, C.W., Matthay, M.A., et al. (2011). Alveolar epithelial cells express mesenchymal proteins in patients with idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 301, L71-78.
    Mercado-Pimentel, M.E., and Runyan, R.B. (2007). Multiple transforming growth factor-beta isoforms and receptors function during epithelial-mesenchymal cell transformation in the embryonic heart. Cells Tissues Organs 185, 146-156.
    Miettinen, P.J., Ebner, R., Lopez, A.R., and Derynck, R. (1994). TGF-beta induced transdifferentiation of mammary epithelial cells to mesenchymal cells: involvement of type I receptors. J Cell Biol 127, 2021-2036.
    Mori, K., Shibanuma, M., and Nose, K. (2004). Invasive potential induced under long-term oxidative stress in mammary epithelial cells. Cancer Res 64, 7464-7472.
    Moustakas, A., and Heldin, C.H. (2005). Non-Smad TGF-beta signals. J Cell Sci 118, 3573-3584.
    Nakajima, Y., Yamagishi, T., Hokari, S., and Nakamura, H. (2000). Mechanisms involved in valvuloseptal endocardial cushion formation in early cardiogenesis: roles of transforming growth factor (TGF)-beta and bone morphogenetic protein (BMP). Anat Rec 258, 119-127.
    Nakao, A., Fujii, M., Matsumura, R., Kumano, K., Saito, Y., Miyazono, K., and Iwamoto, I. (1999). Transient gene transfer and expression of Smad7 prevents bleomycin-induced lung fibrosis in mice. J Clin Invest 104, 5-11.
    Nakaya, Y., and Sheng, G. (2008). Epithelial to mesenchymal transition during gastrulation: an embryological view. Dev Growth Differ 50, 755-766.
    Nawshad, A., LaGamba, D., and Hay, E.D. (2004). Transforming growth factor beta (TGFbeta) signalling in palatal growth, apoptosis and epithelial mesenchymal transformation (EMT). Arch Oral Biol 49, 675-689.
    Netherton, S.J., and Bonni, S. (2010). Suppression of TGFbeta-induced epithelial-mesenchymal transition like phenotype by a PIAS1 regulated sumoylation pathway in NMuMG epithelial cells. PLoS One 5, e13971.
    Nieman, M.T., Prudoff, R.S., Johnson, K.R., and Wheelock, M.J. (1999). N-cadherin promotes motility in human breast cancer cells regardless of their E-cadherin expression. J Cell Biol 147, 631-644.
    Ogeturk, M., Kus, I., Colakoglu, N., Zararsiz, I., Ilhan, N., and Sarsilmaz, M. (2005). Caffeic acid phenethyl ester protects kidneys against carbon tetrachloride toxicity in rats. J Ethnopharmacol 97, 273-280.
    Orsatti, C.L., Missima, F., Pagliarone, A.C., Bachiega, T.F., Bufalo, M.C., Araujo, J.P., Jr., and Sforcin, J.M. (2010). Propolis immunomodulatory action in vivo on Toll-like receptors 2 and 4 expression and on pro-inflammatory cytokines production in mice. Phytother Res 24, 1141-1146.
    Ozyurt, H., Sogut, S., Yildirim, Z., Kart, L., Iraz, M., Armutcu, F., Temel, I., Ozen, S., Uzun, A., and Akyol, O. (2004). Inhibitory effect of caffeic acid phenethyl ester on bleomycine-induced lung fibrosis in rats. Clin Chim Acta 339, 65-75.
    Paradis, I.L., Dauber, J.H., and Rabin, B.S. (1986). Lymphocyte phenotypes in bronchoalveolar lavage and lung tissue in sarcoidosis and idiopathic pulmonary fibrosis. Am Rev Respir Dis 133, 855-860.
    Peinado, H., Olmeda, D., and Cano, A. (2007). Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nature reviews Cancer 7, 415-428.
    Radisky, D.C., Levy, D.D., Littlepage, L.E., Liu, H., Nelson, C.M., Fata, J.E., Leake, D., Godden, E.L., Albertson, D.G., Nieto, M.A., et al. (2005). Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature 436, 123-127.
    Raghu, G., Depaso, W.J., Cain, K., Hammar, S.P., Wetzel, C.E., Dreis, D.F., Hutchinson, J., Pardee, N.E., and Winterbauer, R.H. (1991). Azathioprine combined with prednisone in the treatment of idiopathic pulmonary fibrosis: a prospective double-blind, randomized, placebo-controlled clinical trial. Am Rev Respir Dis 144, 291-296.
    Raghu, G., Weycker, D., Edelsberg, J., Bradford, W.Z., and Oster, G. (2006). Incidence and prevalence of idiopathic pulmonary fibrosis. American journal of respiratory and critical care medicine 174, 810-816.
    Ranganathan, P., Agrawal, A., Bhushan, R., Chavalmane, A.K., Kalathur, R.K., Takahashi, T., and Kondaiah, P. (2007). Expression profiling of genes regulated by TGF-beta: differential regulation in normal and tumour cells. BMC Genomics 8, 98.
    Raso, G.M., Meli, R., Di Carlo, G., Pacilio, M., and Di Carlo, R. (2001). Inhibition of inducible nitric oxide synthase and cyclooxygenase-2 expression by flavonoids in macrophage J774A.1. Life Sci 68, 921-931.
    Remy-Jardin, M., Giraud, F., Remy, J., Copin, M.C., Gosselin, B., and Duhamel, A. (1993). Importance of ground-glass attenuation in chronic diffuse infiltrative lung disease: pathologic-CT correlation. Radiology 189, 693-698.
    Rezzani, R., Giugno, L., Buffoli, B., Bonomini, F., and Bianchi, R. (2005). The protective effect of caffeic acid phenethyl ester against cyclosporine A-induced cardiotoxicity in rats. Toxicology 212, 155-164.
    Rhyu, D.Y., Yang, Y., Ha, H., Lee, G.T., Song, J.S., Uh, S.T., and Lee, H.B. (2005). Role of reactive oxygen species in TGF-beta1-induced mitogen-activated protein kinase activation and epithelial-mesenchymal transition in renal tubular epithelial cells. J Am Soc Nephrol 16, 667-675.
    Ridley, A.J., and Hall, A. (1992). The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70, 389-399.
    Rossi, A., Ligresti, A., Longo, R., Russo, A., Borrelli, F., and Sautebin, L. (2002). The inhibitory effect of propolis and caffeic acid phenethyl ester on cyclooxygenase activity in J774 macrophages. Phytomedicine 9, 530-535.
    Scott, J., Johnston, I., and Britton, J. (1990). What causes cryptogenic fibrosing alveolitis? A case-control study of environmental exposure to dust. BMJ 301, 1015-1017.
    Selman, M., Carrillo, G., Salas, J., Padilla, R.P., Perez-Chavira, R., Sansores, R., and Chapela, R. (1998). Colchicine, D-penicillamine, and prednisone in the treatment of idiopathic pulmonary fibrosis: a controlled clinical trial. Chest 114, 507-512.
    Selman, M., King, T.E., and Pardo, A. (2001). Idiopathic pulmonary fibrosis: prevailing and evolving hypotheses about its pathogenesis and implications for therapy. Ann Intern Med 134, 136-151.
    Sforcin, J.M., Kaneno, R., and Funari, S.R.C. (2002). Absence of seasonal effect on the immunomodulatory action of Brazilian propolis on natural killer activity. Journal of Venomous Animals and Toxins 8.
    Shi, L.L., Chen, B.N., Gao, M., Zhang, H.A., Li, Y.J., Wang, L., and Du, G.H. (2011). The characteristics of therapeutic effect of pinocembrin in transient global brain ischemia/reperfusion rats. Life Sci 88, 521-528.
    Shigeoka, Y., Igishi, T., Matsumoto, S., Nakanishi, H., Kodani, M., Yasuda, K., Hitsuda, Y., and Shimizu, E. (2004). Sulindac sulfide and caffeic acid phenethyl ester suppress the motility of lung adenocarcinoma cells promoted by transforming growth factor-beta through Akt inhibition. J Cancer Res Clin Oncol 130, 146-152.
    Silva, V., Genta, G., Moller, M.N., Masner, M., Thomson, L., Romero, N., Radi, R., Fernandes, D.C., Laurindo, F.R., Heinzen, H., et al. (2011). Antioxidant Activity of Uruguayan Propolis. In Vitro and Cellular Assays. J Agric Food Chem 59, 6430-6437.
    Sime, P.J., Xing, Z., Graham, F.L., Csaky, K.G., and Gauldie, J. (1997). Adenovector-mediated gene transfer of active transforming growth factor-beta1 induces prolonged severe fibrosis in rat lung. J Clin Invest 100, 768-776.
    Sokol, J.P., Neil, J.R., Schiemann, B.J., and Schiemann, W.P. (2005). The use of cystatin C to inhibit epithelial-mesenchymal transition and morphological transformation stimulated by transforming growth factor-beta. Breast Cancer Res 7, R844-853.
    Talbot-Smith, A., Syn, W.K., MacQuillan, G., Neil, D., Elias, E., and Ryan, P. (2009). Familial idiopathic pulmonary fibrosis in association with bone marrow hypoplasia and hepatic nodular regenerative hyperplasia: a new "trimorphic" syndrome. Thorax 64, 440-443.
    Tan, X., Dagher, H., Hutton, C.A., and Bourke, J.E. (2010). Effects of PPAR gamma ligands on TGF-beta1-induced epithelial-mesenchymal transition in alveolar epithelial cells. Respir Res 11, 21.
    Thiery, J.P. (2002). Epithelial-mesenchymal transitions in tumour progression. Nature reviews Cancer 2, 442-454.
    Thiery, J.P., and Sleeman, J.P. (2006). Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol 7, 131-142.
    Tsukazaki, T., Chiang, T.A., Davison, A.F., Attisano, L., and Wrana, J.L. (1998). SARA, a FYVE domain protein that recruits Smad2 to the TGFbeta receptor. Cell 95, 779-791.
    Valcourt, U., Kowanetz, M., Niimi, H., Heldin, C.H., and Moustakas, A. (2005). TGF-beta and the Smad signaling pathway support transcriptomic reprogramming during epithelial-mesenchymal cell transition. Mol Biol Cell 16, 1987-2002.
    Visscher, D.W., and Myers, J.L. (2006). Histologic spectrum of idiopathic interstitial pneumonias. Proc Am Thorac Soc 3, 322-329.
    Viuda-Martos, M., Ruiz-Navajas, Y., Fernandez-Lopez, J., and Perez-Alvarez, J.A. (2008). Functional properties of honey, propolis, and royal jelly. J Food Sci 73, R117-124.
    Walsh, L.A., Nawshad, A., and Medici, D. (2011). Discoidin domain receptor 2 is a critical regulator of epithelial-mesenchymal transition. Matrix Biol 30, 243-247.
    Wilkes, M.C., Mitchell, H., Penheiter, S.G., Dore, J.J., Suzuki, K., Edens, M., Sharma, D.K., Pagano, R.E., and Leof, E.B. (2005). Transforming growth factor-beta activation of phosphatidylinositol 3-kinase is independent of Smad2 and Smad3 and regulates fibroblast responses via p21-activated kinase-2. Cancer Res 65, 10431-10440.
    Willis, B.C., and Borok, Z. (2007). TGF-beta-induced EMT: mechanisms and implications for fibrotic lung disease. Am J Physiol Lung Cell Mol Physiol 293, L525-534.
    Willis, B.C., Liebler, J.M., Luby-Phelps, K., Nicholson, A.G., Crandall, E.D., du Bois, R.M., and Borok, Z. (2005). Induction of epithelial-mesenchymal transition in alveolar epithelial cells by transforming growth factor-beta1: potential role in idiopathic pulmonary fibrosis. Am J Pathol 166, 1321-1332.
    Xu, J., Lamouille, S., and Derynck, R. (2009). TGF-beta-induced epithelial to mesenchymal transition. Cell Res 19, 156-172.
    Xu, Y.D., Hua, J., Mui, A., O'Connor, R., Grotendorst, G., and Khalil, N. (2003). Release of biologically active TGF-beta1 by alveolar epithelial cells results in pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 285, L527-539.
    Yang, Y., Pan, X., Lei, W., Wang, J., and Song, J. (2006). Transforming growth factor-beta1 induces epithelial-to-mesenchymal transition and apoptosis via a cell cycle-dependent mechanism. Oncogene 25, 7235-7244.
    Yang, Y., Zhao, S., and Song, J. (2004). Caspase-dependent apoptosis and -independent poly(ADP-ribose) polymerase cleavage induced by transforming growth factor beta1. Int J Biochem Cell Biol 36, 223-234.
    Yao, G., Xu, L., Wu, X., Yang, J., and Chen, H. (2009). Preventive effects of salvianolic acid B on transforming growth factor-beta1-induced epithelial-to-mesenchymal transition of human kidney cells. Biol Pharm Bull 32, 882-886.
    Yao, H.W., Xie, Q.M., Chen, J.Q., Deng, Y.M., and Tang, H.F. (2004). TGF-beta1 induces alveolar epithelial to mesenchymal transition in vitro. Life Sci 76, 29-37.
    Yi, J.Y., Shin, I., and Arteaga, C.L. (2005). Type I transforming growth factor beta receptor binds to and activates phosphatidylinositol 3-kinase. J Biol Chem 280, 10870-10876.
    Yu, H., Konigshoff, M., Jayachandran, A., Handley, D., Seeger, W., Kaminski, N., and Eickelberg, O. (2008). Transgelin is a direct target of TGF-beta/Smad3-dependent epithelial cell migration in lung fibrosis. FASEB J 22, 1778-1789.
    Zhang, A., Dong, Z., and Yang, T. (2006). Prostaglandin D2 inhibits TGF-beta1-induced epithelial-to-mesenchymal transition in MDCK cells. Am J Physiol Renal Physiol 291, F1332-1342.
    Zhang, K.H., Tian, H.Y., Gao, X., Lei, W.W., Hu, Y., Wang, D.M., Pan, X.C., Yu, M.L., Xu, G.J., Zhao, F.K., et al. (2009). Ferritin heavy chain-mediated iron homeostasis and subsequent increased reactive oxygen species production are essential for epithelial-mesenchymal transition. Cancer Res 69, 5340-5348.
    Zhang, L., Lei, W., Wang, X., Tang, Y., and Song, J. (2010). Glucocorticoid induces mesenchymal-to-epithelial transition and inhibits TGF-beta1-induced epithelial-to-mesenchymal transition and cell migration. FEBS Lett 584, 4646-4654.
    Zhao, J., Shi, W., Wang, Y.L., Chen, H., Bringas, P., Jr., Datto, M.B., Frederick, J.P., Wang, X.F., and Warburton, D. (2002). Smad3 deficiency attenuates bleomycin-induced pulmonary fibrosis in mice. Am J Physiol Lung Cell Mol Physiol 282, L585-593.
    Zoltan-Jones, A., Huang, L., Ghatak, S., and Toole, B.P. (2003). Elevated hyaluronan production induces mesenchymal and transformed properties in epithelial cells. J Biol Chem 278, 45801-45810.

    無法下載圖示 校內:2021-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE