簡易檢索 / 詳目顯示

研究生: 盧勁綸
Lu, Ching-Lun
論文名稱: 繪製幾何圖形的文句語意分析與應用
Semantic Analysis of Textual Sentences for Drawing Geometric Shapes and Its Applications
指導教授: 舒宇宸
Shu, Yu-Chen
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系應用數學碩博士班
Department of Mathematics
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 22
中文關鍵詞: 語意分析分類GeoGebra測距K近鄰演算法
外文關鍵詞: semantic analysis, classification, GeoGebra, metric, k-nearest neighbors algorithm
相關次數: 點閱:153下載:35
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 這篇論文研究的是如何將繪製幾何圖形的口語表達轉換為繪圖軟體GeoGebra的指令。透過語音辨識,將聲音轉換為文字,從文字中分析並組合出符合的GeoGebra繪圖指令,並使用自動化程式操作GeoGebra,使其自動繪製幾何圖形。

    自動化繪圖系統的流程主要分成三個階段:語音辨識、文字轉指令、執行GeoGebra。語音辨識引用python的相關套件,將聲音轉成文字。文字轉指令是這份論文最主要的部分,轉換方式有兩個流程。第一個流程是先將文字分類出所代表的繪圖指令,依據選定的繪圖指令設定關鍵字,記錄文字裡出現關鍵字的次數和位置,將文字以向量表示,藉此觀察文字在多維空間的分佈情形。定義兩個文字之間的距離函數,判斷文字在多維空間中的距離遠近,並使用K-近鄰演算法進行分類。第二個流程是透過各個繪圖指令的語意分析程式,將所需要的參數組合成完整的繪圖指令。第三個流程就是透過自動化程式執行GeoGebra,自動產生圖形。

    這三個階段都需要考慮判斷的準確率,為了模擬語音辨識錯誤的情形,在提供給K-近鄰演算法的資料中,也收集錯字、缺漏字等不完整的句子。在文字轉指令的過程中,我們有84%的準確率。然而在錯誤的情況中,大多是因為口語文字接近其他繪圖指令類別,導致K-近鄰演算法分類錯誤。

    未來可語音控制的自動化繪圖系統提供使用者一個新的繪圖方式,結合語音辨識、機器學習與自動化控制,讓繪圖軟體的操作過程更加創新。

    This paper focuses on how to convert the spoken expressions of drawing geometric figures into instructions for the drawing software GeoGebra. By speech recognition, the sound is converted into text, and the corresponding GeoGebra drawing instructions are analyzed and combined from the text. GeoGebra is operated by an automated program to automatically draw geometric figures.

    First, we introduce the progress of our system. There are three stages: speech recognition, text-to-command, and GeoGebra execution. The second stage is the most important stage in this system. There are two processes in this part. The first process is consist of (i) classifying the text into the drawing instructions represented, (ii) setting keywords according to the selected drawing instructions, (iii) recording the number and position of the keywords in the text, and (iv) representing the text as a vector to observe the distribution of the text in the multi-dimensional space situation. We will introduce GeoGebra and some packages of Python, and k-nearest neighbors algorithm. We define the vector space and distance that we need, then use them for our model.

    In these three stages, the accuracy of judgment needs to be considered. In the process we have 84% accuracy. However, in the wrong cases, mostly because the spoken words are close to other drawing instruction classes, the K-Nearest Neighbors algorithm classifies them incorrectly.

    In the future, the automatic drawing system will provide users with a new drawing method, combining voice recognition, machine learning and automatic control to make the operation process of the drawing software more innovative.

    1 簡介 (1) 1.1 操作流程 (1) 2 先備知識 (2) 2.1 GeoGebra (2) 2.2 Python 套件 (3) 2.3 K近鄰演算法 (3) 2.4 混淆矩陣 (4) 3 問題敘述 (6) 3.1 分類問題 (6) 3.2 分段函數 (6) 3.3 分類語句 (8) 3.3.1 語句資料 (8) 3.3.2 量化語句資料 (8) 3.3.3 兩語句之間距離 (10) 3.3.4 預測模型 (10) 4 數值結果 (12) 5 實作紀錄 (16) 5.1 程式碼 (16) 5.2 程式實際操作記錄 (18) 6 結論 (20) Bibliography (21)

    [1] SAADATFAR, Hamid, et al. A new K-nearest neighbors classifier for big data
    based on efficient data pruning. Mathematics, 2020, 8.2: 286.
    [2] ZHANG, Zhongheng. Introduction to machine learning: k-nearest neighbors.
    Annals of translational medicine, 2016, 4.11.
    [3] GUO, Gongde, et al. KNN model-based approach in classification. In: OTM
    Confederated International Conferences” On the Move to Meaningful Internet
    Systems”. Springer, Berlin, Heidelberg, 2003. p. 986-996.
    [4] ZULNAIDI, Hutkemri; ZAKARIA, Effandi. The effect of using GeoGebra on
    conceptual and procedural knowledge of high school mathematics students.
    Asian Social Science, 2012, 8.11: 102.
    [5] SANGWIN, Chris. A brief review of GeoGebra: dynamic mathematics. MSor
    Connections, 2007, 7.2: 36.
    [6] ARBAIN, Nazihatulhasanah; SHUKOR, Nurbiha A. The effects of GeoGebra
    on students achievement. Procedia-Social and Behavioral Sciences, 2015, 172:
    208-214.
    [7] CLANCEY, William J. Classification problem solving. Stanford, CA: Stanford
    University, 1984.
    [8] HAGHIGHI, Sepand, et al. PyCM: Multiclass confusion matrix library in
    Python. Journal of Open Source Software, 2018, 3.25: 729.
    [9] HONG, Chong Sun; OH, Tae Gyu. TPR-TNR plot for confusion matrix. Com-
    munications for Statistical Applications and Methods, 2021, 28.2: 161-169.
    [10] GUNDECHA, Unmesh. Learning Selenium testing tools with Python. Packt
    Publishing Ltd, 2014.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE