| 研究生: |
陳昭安 Chen, Chao-An |
|---|---|
| 論文名稱: |
雙顯微操縱器於虛擬環境下之物件搬運控制 Object transportation control by dual micro manipulators in VR environment |
| 指導教授: |
張仁宗
Chang, Ren-Jung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 微物件搬運控制 、微操縱系統 、自動聚焦 、虛擬實境 、視覺伺服 、樣版比對 |
| 外文關鍵詞: | transportation control, auto focusing, visual servo, pattern matching, micro manipulation system, virtual reality |
| 相關次數: | 點閱:106 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
本研究利用實驗室現有的設備---倒置生物顯微鏡(Olympus IX71)、微操縱器(MMS-77D)、雷射位移計(Microtrak 7000)與聚焦機構共同組成完整的微操縱系統。
在雙顯微操縱器上分別安裝微夾持器,對於物件搬運的成功取決於微夾持器的夾持力量,而物件搬運的過程是否穩當乃至物件搬運的最終位置是否精準取決於雙顯微操縱器的位置控制。本論文修改主從式之位置對位置協調控制架構,針對從動微操縱器之位置命令追蹤改用絕對位置模式,同時以撓性夾爪作為微操作器之端效器可避免影像位置估測的不精確所造成過大力量衝擊,以達成雙顯微操縱器的物件搬運控制的最終目標。
微小世界下的操作皆是在隔離的環境中進行,換句話說,操作員是透過影像視覺系統的輔助來下達指令與監視目前的操作狀況。由於在顯微鏡底下工作會失去深度資訊,故本論文導入虛擬實境技術以重建3D之操縱環境,使操作者能有更方便的介面來從事物件搬運控制。
Abstract
In this thesis, all equipments which are existed in the laboratory: inverted microscopy (Olympus IX71), micro manipulator (MMS-77D), laser displacement sensor (Microtrak 7000) and focus mechanism are included to integrate a whole micro manipulation system.
At first, each micro gripper is placed on dual micro manipulators. The success of doing object transportation is dependent on gripping force of the micro gripper. However, whether the final position of transporting object is accurate or not depends on the positioning control of the dual micro manipulators. For achieving the above two objectives, the position-to-position architecture of master/slave coordination is modified in this thesis. By adopting the absolute position to be the reference trajectory of the follower of micro manipulator, and employing the flexible gripper as an end effector to absorb the disturbance force resulting from positioning error measured on image inaccuracy, the task of object transportation by dual micro manipulators is achieved.
The micro operations in general are under isolated environment. In order to resolve the issues when operating under the microscope and provide an easier interface to user, a VR technique is added as an auxiliary tool to reconstruct another 3D manipulation environment in this thesis.
參考文獻
[1] J. Y. S. Luh and Y. F. Zheng, “Constrained relations between two coordinated industrial robots for motion control,” International Journal of Robotics Research, v 6, n 3, Fall, 1987, pp. 60-70.
[2] Y. F. Zheng and J. Y. S. Luh, “Control of two coordinated robots in motion,” Proceedings of the IEEE Conference on Decision and Control Including The Symposium on Adaptive Pro, 1985, pp. 1761-1766.
[3] T. Mukaiyama, K. Kim, and Y. Hori, “Implementation of cooperative manipulation using decentralized robust position/force control,” International Workshop on Advanced Motion Control, AMC, v 2, 1996, pp. 529-534.
[4] A. Rodriguez-Angeles and H. Nijmeijer, “Coordination of two robot manipulators based on position measurements only,” International Journal of Control, v 74, n 13, Sep 10, 2001, pp. 1311-1323.
[5] J. M. Tao, J. Y. S. Luh, and Y. F. Zheng, “Compliant coordination control of two moving industrial robots,” IEEE Transactions on Robotics and Automation, v 6, n 3, Jun, 1990, pp. 322-330.
[6] J. Lim and D. H. Chyung, “On a control scheme for two cooperating robot arms,” Proceedings of the IEEE Conference on Decision and Control Including The Symposium on Adaptive Pro, 1985, pp. 334-337.
[7] M. H. Raibert and J. J. Craig, “Hybrid position/force control of manipulators,” Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, v 103, n 2, Jun, 1981, pp. 126-133.
[8] S. Hayati, “Hybrid position/force control of multi-arm cooperating robots,” in Proc. IEEE Conf Robotics and Automation. San Francisco. CA, 1986, pp. 82-89.
[9] M. Uchiyama and P. Dauchez, “A symmetric hybrid position/force control scheme for the coordination of two robots,” Proceedings IEEE International Conference on Robotics and Automation, 1988, pp. 350–356.
[10] N. Hogan, "Impedance Control Part 1 – Theory," Trans. of ASME, Journal of Dynamics Systems Measurement and Control, Vol. 107, 1985, pp. 1.
[11] N. Hogan, "Impedance Control Part 2 – Implementation," Trans. of ASME, Journal of Dynamics Systems Measurement and Control, Vol. 107, 1985, pp. 8.
[12] N. Hogan, "Impedance Control Part 3 – Application," Trans. of ASME, Journal of Dynamics Systems Measurement and Control, Vol. 107, 1985, pp. 17.
[13] S. A. Schneider and R. H. Jr. Cannon, “Object impedance control for cooperative manipulation: theory and experimental results,” IEEE Transactions on Robotics and Automation, v 8, n 3, Jun, 1992, pp. 383-394.
[14] F. Cacavale, C. Natale, B. Siciliano, and L. Villani, “Integration for the next generation: Embedding force control into industrial robots,” IEEE Robotics and Automation Magazine, v 12, n 3, September, 2005, pp. 53-64.
[15] R. Ikeura and H. Inooka, “Cooperative force control in carrying an object by two humans,” Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, v 3, 1995, pp. 2307-2311.
[16] R. G. Bonitz and T. C. Hsia, “Internal force-based impedance control for cooperating manipulators,” Proceedings - IEEE International Conference on Robotics and Automation, v 3, 1993, pp. 944-949.
[17] C. D. Kopf and T. Yabuta, “Experimental comparison of master/slave and hybrid two-arm position/force control,” in Proc. 1988 IEEE Robotics and Automation Conf., Philadelphia, PA, pp. 1633-1637.
[18] D. J. Cox, K. Rackers, and D. Tesar, “Cooperative manipulation experiments using a dual-arm robot,” IECON Proceedings (Industrial Electronics Conference), v 1, 1995, pp. 104-109.
[19] F. Arai, T. Sugiyama, T. Fukuda, H. Iwata, and K. Itoigawa, “Micro tri-axial force sensor for 3D bio-micromanipulation,” Proceedings - IEEE International Conference on Robotics and Automation, v 4, 1999, pp. 2744-2749.
[20] A. Sulzmann and J. Jacot, “3D computer graphics based interface to real microscope world for μ-robot telemanipulation and position control,” Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, v 1, 1995, pp. 285-291.
[21] T. Tanikawa and T. Arai, “Development of a micro-manipulation system having a two-fingered micro-hand,” IEEE Transactions on Robotics and Automation, v 15, n 1, Feb, 1999, pp. 152-162.
[22] M. Sitti and H. Hashimoto, “Two-dimensional fine particle positioning using a piezoresistive cantilever as micro/nano-manipulator,” Proceedings - IEEE International Conference on Robotics and Automation, v 4, 1999, pp. 2729-2735.
[23] F. Arai, T. Sugiyama, P. Luangjarmekorn, A. Kawaji, T. Fukuda, K. Itoigawa, and A. Maeda, “3D viewpoint selection and bilateral control for bio-micromanipulation,” Proceedings - IEEE International Conference on Robotics and Automation, v 1, 2000, pp. 947-952.
[24] N. Ando, K. Gonda, H. Shintani, and H. Hashimoto, “Development of the parallel manipulator workspace display system for tele-micromanipulation,” IEEE International Conference on Intelligent Robots and Systems, v 4, 2001, pp. 2172-2177.
[25] S. Saito, H. Himeno, K. Takahashi, and T. Onzawa, “Electrostatic detachment of a micro-object from a probe by applied voltage,” IEEE International Conference on Intelligent Robots and Systems, v 2, 2002, pp. 1790-1795.
[26] B. Kim, H. Kang, D. H. Kim, G. T. Park, and J. O. Park, “Flexible microassembly system based on hybrid manipulation scheme,” IEEE International Conference on Intelligent Robots and Systems, v 2, 2003, pp. 2061-2066.
[27] R. Ikeura and H. Inooka, “Cooperative force control in carrying an object by two humans,” Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, v 3, 1995, pp. 2307-2311.
[28] H. Kazerooni, “Automated Robotic Deburring Using Impedance Control,” IEEE Control Systems Magazine, v 8, n 1, Feb, 1988, pp. 21-25.
[29] P. Gawthrop and L. Smith, “Metamodelling: for bond graphs and dynamic systems,” Prentice Hall, 1996.
[30] R. J. Anderson and M. W. Spong, “Hybrid impedance control of robotic manipulators,” IEEE Journal of Robotics and Automation, v 4, n 5, Oct, 1988, pp. 549-556.
[31] K. I. Kim and Y. F. Zheng, “Two strategies of position and force control for two industrial robots handling a single object,” Robotics, v 5, n 4, Dec, 1989, pp. 395-403.
[32] M. T. Mason, “Compliance and force control for computer controlled manipulators,” IEEE Transactions on Systems, Man and Cybernetics, v SMC-11, n 6, Jun, 1981, pp. 418-432.
[33] S. A. Hutchinson, G. D. Hager, and P. I. Corke, “A tutorial on visual servo control,” IEEE Trans. Robot. Automat., v 12, n 5, 1996, pp. 651-670.
[34] T. F. Wiegand, “Interactive rendering of CSG models,” Eurographics, vol. 15, 1997, pp. 249-261.
[35] R. S. Wright and M. Sweet, “OpenGL supper bible 2nd,” Waite Group Press, 2000.
[36] 蘇育賢,「虛擬實境於形狀記憶合金高分子夾持系統之發展」,國立成功大學機械工程學系論文,2004。
[37] 黃仁佐,「應用虛擬場景於隔離環境微物件遠端操作系統」,國立成功大學機械工程學系論文,2005。
[38] R. C. Gonzalez and R. E. Woods, “Digital image processing 2nd,” Prentice Hall, 2001.
[39] “Matrox ActiveMIL User Guide v. 7.0,” Matrox Electronic Systems Ltd., 2001.
[40] 集思廣譯工作室編譯,「Windows程式設計:使用MFC」,文魁資訊,2004。
[41] D. P. Garg, “Coordination of multiple robots via supervisory control,” Proceedings of the 1991 IEEE International Symposium on Intelligent Control, 1991, pp. 19-24.
[42] D. A. Solomon, "Inside Windows NT 2nd,” Microsoft Press, 1998.