簡易檢索 / 詳目顯示

研究生: 鄭韋志
Cheng, Wei-Chih
論文名稱: 以茚-碳六十的雙加成物為n型半導體的高分子太陽電池研究
Polymer solar cells with indene-C60 bisadduct as n-type semiconductor
指導教授: 鄭弘隆
Cheng, Horng-Long
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 110
中文關鍵詞: 高分子太陽電池形貌聚(3-己烷基噻吩)碳六十衍生物茚-碳六十的雙加成物
外文關鍵詞: polymer solar cells, morphology, poly(3-hexylthiophene), [6,6]-phenyl C61-butyric acid methyl ester, indene-C60 bisadduct
相關次數: 點閱:133下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高分子太陽電池的製程中,溶劑效應決定了主動層的形貌,故溶劑在元件製程中扮演相當重要的角色。本研究以氯苯、鄰-二氯苯與1,2,4-三氯苯為主動層溶劑,分別製備聚(3-己烷基噻吩)(P3HT)摻雜碳六十衍生物(PCBM)的高分子太陽電池,並藉改變主動層溶液濃度,使不同溶劑可製備相同厚度的主動層,以探討高分子太陽電池的主動層形貌對其元件電特性的影響。研究結果顯示P3HT結晶區的過度成長將導致激子分離率下降並截斷電子傳輸路徑,因而導致元件短路電流與填充因子下降;P3HT的平均有效共軛鏈長過於延展,將導致其最高已被占據分子軌域(HOMO)能階下降,使元件開路電壓下降。而以氯苯製備的主動層,具備適度的P3HT結晶區與共軛鏈長,因此獲致最佳的元件電特性。另外,經比較調整主動層厚度前後的元件,我們指出若要分析不同溶劑或者溶劑添加物對元件的影響,各主動層厚度需列為考量。

    高分子太陽電池的開路電壓決定於p型材料的最高已被占據分子軌域(HOMO)與n型材料的最低未被佔據分子軌域(LUMO)的能階差。本研究引入具備高LUMO能階的新型碳六十衍生物:茚-碳六十的雙加成物(ICBA),使用氯苯、二氯苯與三氯苯為主動層溶劑,製備P3HT:ICBA高分子太陽電池,並討論其主動層形貌與元件電特性,再與P3HT:PCBM元件比較。結果顯示主動層中ICBA的存在較PCBM不利於P3HT結晶區形成。因為ICBA具有較高的LUMO能階,可形成較高的元件內建電場,因此P3HT:ICBA元件表現出較高開路電壓與填充因子;而ICBA較差的電子遷移率則導致P3HT:ICBA元件有較低短路電流。另外,研究結果發現P3HT:ICBA元件的電流主要由電洞所貢獻; P3HT:PCBM元件的則由電子所貢獻。因此,於P3HT:ICBA元件中,隨著P3HT結晶區過度成長,我們並未觀察到明顯下降地填充因子。

    Solvent effects play important roles in the fabrication of polymer solar cells because of their critical influence over the active layer morphology. In this thesis, we use chlorobenzene (CB), ortho-dichlorobenzene (DCB), and 1,2,4-trichlorobenzene (TCB) as solvents to prepare the active layers of poly(3-hexylthiophene) (P3HT):[6,6]-phenyl C61-butyric acid methyl ester (PCBM) for polymer solar cell applications. Tuning the solution concentration enables the preparation of P3HT:PCBM films with the same thicknesses using various solvents. Therefore, the correlations between active-layer morphologies and device performances could be found out: The short-circuit current density, open-circuit voltage, and fill factor of the device are high because of the small dead layer region, short P3HT conjugation length, and good percolation path for electrons in the active layer prepared using CB, respectively. We also demonstrate that the misleading conclusions will be brought out if we disregard the different thicknesses of the active layers that are fabricated using various solvents.

    The open-circuit voltage of polymer solar cells is defined as the energy difference between the lowest unoccupied molecular orbital (LUMO) level of the n-type semiconductor and the highest occupied molecular orbital (HOMO) level of the p-type semiconductor. We introduce a novel fullerene derivative called indene-C60 bisadduct (ICBA), which LUMO level is 0.17 eV higher than that of PCBM. We use CB, DCB, and TCB as solvents to fabricate the P3HT:ICBA devices, and compare the active-layer morphologies and device performances between the P3HT:ICBA and P3HT:PCBM devices. We find that the presence of ICBA in the active layer is unfavorable to the formation of the P3HT crystal. The high built-in field in the P3HT:ICBA devices is due to the high LUMO energy level of ICBA, thus resulting in a high open-circuit voltage and a high fill factor. On the other hand, the low short-circuit current may be due to the low charge mobility of ICBA. Finally, we find that the currents of P3HT:ICBA and P3HT:PCBM devices are dominated by holes and electrons, respectively. That is why the large P3HT crystal does not affect the fill factor of P3HT:ICBA device as obviously as P3HT:PCBM system.

    第 1 章 緒論 1 1.1 前言 1 1.2 太陽電池種類 2 1.3 高分子太陽電池工作原理 3 1.4 高分子太陽電池電特性介紹 5 1.4.1 短路電流 6 1.4.2 開路電壓 9 1.4.3 填充因子 10 1.5 高分子太陽電池發展簡史 12 1.6 研究動機 15 第2 章 高分子太陽電池的主動層形貌對電特性影響研究 23 2.1 前言 23 2.2 實驗 25 2.2.1 基板、材料 25 2.2.2 主動層溶液配置 26 2.2.3 元件製備 26 2.2.4 元件量測、薄膜分析 28 2.2.5 主動層膜厚「歸一化」 29 2.3 結果與討論:主動層溶劑對高分子太陽電池的電特性影響 30 2.3.1 元件電特性 31 2.3.2 可見光/紫外光吸收光譜 31 2.3.3 XRD 光譜 33 2.3.4 AFM 圖像 34 2.3.5 討論 34 2.4 結果與討論:主動層形貌對高分子太陽電池的電特性影響 37 2.4.1 元件電特性 38 2.4.2 可見光/紫外光吸收光譜 38 2.4.3 XRD 光譜 39 2.4.4 AFM 圖像 39 2.4.5 討論 39 2.5 結論 42 第3 章 具茚-碳六十的雙加成物為n 型半導體的高分子太陽電池研究 68 3.1 前言 68 3.2 實驗 71 3.2.1 基板、材料 71 3.2.2 主動層溶液配置 71 3.2.3 元件製備 71 3.2.4 元件量測、薄膜分析 72 3.2.5 主動層膜厚「歸一化」 72 3.3 結果與討論 72 3.3.1 元件電特性 72 3.3.2 可見光/紫外光吸收光譜 73 3.3.3 XRD 光譜 74 3.3.4 AFM 圖像 74 3.3.5 討論:主動層形貌對P3HT:ICBA 高分子太陽電池的電特性影響 75 3.3.6 討論:P3HT:ICBA與P3HT:PCBM 高分子太陽電池的特性比較 76 3.4 結論 81 第4 章 總結 98 4.1 結論 98 4.2 未來展望 100 參考文獻 104

    1 M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, "Solar cell efficiency tables (version 38)," Prog Photovoltaics 19 (5), 565 (2011).
    2 P. W. M. Blom, V. D. Mihailetchi, L. J. A. Koster, and D. E. Markov, "Device physics of polymer : fullerene bulk heterojunction solar cells," Adv Mater 19 (12), 1551 (2007).
    3 Jenny Nelson, The Physics of Solar Cells. (Imperial College Press, 2003).
    4 G. Dennler, M. C. Scharber, and C. J. Brabec, "Polymer-Fullerene Bulk-Heterojunction Solar Cells," Adv Mater 21 (13), 1323 (2009).
    5 P. Peumans, A. Yakimov, and S. R. Forrest, "Small molecular weight organic thin-film photodetectors and solar cells," J Appl Phys 93 (7), 3693 (2003).
    6 V. D. Mihailetchi, L. J. A. Koster, J. C. Hummelen, and P. W. M. Blom, "Photocurrent generation in polymer-fullerene bulk heterojunctions," Phys Rev Lett 93 (21), 216601 (2004).
    7 C. Deibel and V. Dyakonov, "Polymer-fullerene bulk heterojunction solar cells," Rep Prog Phys 73 (9), 096401 (2010).
    8 J. Liu, Y. J. Shi, and Y. Yang, "Solvation-induced morphology effects on the performance of polymer-based photovoltaic devices," Adv Funct Mater 11 (6), 420 (2001).
    9 V. D. Mihailetchi, P. W. M. Blom, J. C. Hummelen, and M. T. Rispens, "Cathode dependence of the open-circuit voltage of polymer : fullerene bulk heterojunction solar cells," J Appl Phys 94 (10), 6849 (2003).
    10 M. C. Scharber, D. Wuhlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, and C. L. Brabec, "Design rules for donors in bulk-heterojunction solar cells - Towards 10 % energy-conversion efficiency," Adv Mater 18 (6), 789 (2006).
    11 B. P. Rand, D. P. Burk, and S. R. Forrest, "Offset energies at organic semiconductor heterojunctions and their influence on the open-circuit voltage of thin-film solar cells," Phys Rev B 75 (11), 115327 (2007).
    12 C. K. Chiang, C. R. Fincher, Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau, and A. G. Macdiarmid, "Electrical-Conductivity in Doped Polyacetylene," Phys Rev Lett 39 (17), 1098 (1977).
    13 N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl, "Photoinduced Electron-Transfer from a Conducting Polymer to Buckminsterfullerene," Science 258 (5087), 1474 (1992).
    14 J. C. Hummelen, B. W. Knight, F. Lepeq, F. Wudl, J. Yao, and C. L. Wilkins, "Preparation and Characterization of Fulleroid and Methanofullerene Derivatives," J Org Chem 60 (3), 532 (1995).
    15 G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, "Polymer Photovoltaic Cells - Enhanced Efficiencies Via a Network of Internal Donor-Acceptor Heterojunctions," Science 270 (5243), 1789 (1995).
    16 S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromherz, and J. C. Hummelen, "2.5% efficient organic plastic solar cells," Appl Phys Lett 78 (6), 841 (2001).
    17 C. J. Brabec, S. E. Shaheen, C. Winder, N. S. Sariciftci, and P. Denk, "Effect of LiF/metal electrodes on the performance of plastic solar cells," Appl Phys Lett 80 (7), 1288 (2002).
    18 F. Padinger, R. S. Rittberger, and N. S. Sariciftci, "Effects of postproduction treatment on plastic solar cells," Adv Funct Mater 13 (1), 85 (2003).
    19 P. Schilinsky, C. Waldauf, and C. J. Brabec, "Recombination and loss analysis in polythiophene based bulk heterojunction photodetectors," Appl Phys Lett 81 (20), 3885 (2002).
    20 G. Li, V. Shrotriya, J. S. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, "High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends," Nat Mater 4 (11), 864 (2005).
    21 D. Muhlbacher, M. Scharber, M. Morana, Z. G. Zhu, D. Waller, R. Gaudiana, and C. Brabec, "High photovoltaic performance of a low-bandgap polymer," Adv Mater 18 (21), 2884 (2006); A. B. Tamayo, X. D. Dang, B. Walker, J. Seo, T. Kent, and T. Q. Nguyen, "A low band gap, solution processable oligothiophene with a dialkylated diketopyrrolopyrrole chromophore for use in bulk heterojunction solar cells," Appl Phys Lett 94 (10), 103301 (2009).
    22 N. Blouin, A. Michaud, and M. Leclerc, "A low-bandgap poly(2,7-carbazole) derivative for use in high-performance solar cells," Adv Mater 19 (17), 2295 (2007); Y. J. He, G. J. Zhao, B. Peng, and Y. F. Li, "High-Yield Synthesis and Electrochemical and Photovoltaic Properties of Indene-C(70) Bisadduct," Adv Funct Mater 20 (19), 3383 (2010).
    23 Hsiang-Yu Chen, Jianhui Hou, Shaoqing Zhang, Gang Li, and Yang Yang, "Synthesis, Characterization, and Photovoltaic Properties of a Low Band Gap Polymer Based on Silole-Containing Polythiophenes and 2,1,3-Benzothiadiazole," J Am Chem Soc 130 (48), 2 (2008); E. G. Wang, L. Wang, L. F. Lan, C. Luo, W. L. Zhuang, J. B. Peng, and Y. Cao, "High-performance polymer heterojunction solar cells of a polysilafluorene derivative," Appl Phys Lett 92 (3), 033307 (2008); Y. Y. Liang, Y. Wu, D. Q. Feng, S. T. Tsai, H. J. Son, G. Li, and L. P. Yu, "Development of New Semiconducting Polymers for High Performance Solar Cells," J Am Chem Soc 131 (1), 56 (2009).
    24 H. Y. Chen, J. H. Hou, S. Q. Zhang, Y. Y. Liang, G. W. Yang, Y. Yang, L. P. Yu, Y. Wu, and G. Li, "Polymer solar cells with enhanced open-circuit voltage and efficiency," Nat Photonics 3 (11), 649 (2009).
    25 M. M. Wienk, J. M. Kroon, W. J. H. Verhees, J. Knol, J. C. Hummelen, P. A. van Hal, and R. A. J. Janssen, "Efficient methano[70]fullerene/MDMO-PPV bulk heterojunction photovoltaic cells," Angew Chem Int Edit 42 (29), 3371 (2003).
    26 P. W. M. Blom, M. Lenes, G. J. A. H. Wetzelaer, F. B. Kooistra, S. C. Veenstra, and J. C. Hummelen, "Fullerene bisadducts for enhanced open-circuit voltages and efficiencies in polymer solar cells," Adv Mater 20 (11), 2116 (2008).
    27 R. B. Ross, C. M. Cardona, D. M. Guldi, S. G. Sankaranarayanan, M. O. Reese, N. Kopidakis, J. Peet, B. Walker, G. C. Bazan, E. Van Keuren, B. C. Holloway, and M. Drees, "Endohedral fullerenes for organic photovoltaic devices," Nat Mater 8 (3), 208 (2009).
    28 Hsiang-Yu Chen, Youjun He, Jianhui Hou, and Yongfang, "Indene-C60 Bisadduct: A New Acceptor for High-Performance Polymer Solar Cells," J Am Chem Soc 132 (4), 1377 (2010).
    29 C. J. Brabec, G. Zerza, G. Cerullo, S. De Silvestri, S. Luzzati, J. C. Hummelen, and S. Sariciftci, "Tracing photoinduced electron transfer process in conjugated polymer/fullerene bulk heterojunctions in real time," Chem Phys Lett 340 (3-4), 232 (2001).
    30 C. J. Brabec, N. S. Sariciftci, and J. C. Hummelen, "Plastic solar cells," Adv Funct Mater 11 (1), 15 (2001); W. L. Ma, C. Y. Yang, X. Gong, K. Lee, and A. J. Heeger, "Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology," Adv Funct Mater 15 (10), 1617 (2005); K. Inoue, R. Ulbricht, P. C. Madakasira, W. M. Sampson, S. Lee, J. Gutierrez, J. Ferraris, and A. A. Zakhidov, "Temperature and time dependence of heat treatment of RR-P3HT/PCBM solar cell," Synthetic Met 154 (1-3), 41 (2005); P. Vanlaeke, G. Vanhoyland, T. Aernouts, D. Cheyns, C. Deibel, J. Manca, P. Heremans, and J. Poortmans, "Polythiophene based bulk heterojunction solar cells: Morphology and its implications," Thin Solid Films 511 (-), 358 (2006).
    31 V. D. Mihailetchi, H. X. Xie, B. de Boer, L. M. Popescu, J. C. Hummelen, P. W. M. Blom, and L. J. A. Koster, "Origin of the enhanced performance in poly(3-hexylthiophene): [6,6]-phenyl C-61-butyric acid methyl ester solar cells upon slow drying of the active layer," Appl Phys Lett 89 (1), 012107 (2006).
    32 T. A. Chen, X. M. Wu, and R. D. Rieke, "Regiocontrolled Synthesis of Poly(3-Alkylthiophenes) Mediated by Rieke Zinc - Their Characterization and Solid-State Properties," J Am Chem Soc 117 (1), 233 (1995).
    33 G. M. Wang, J. Swensen, D. Moses, and A. J. Heeger, "Increased mobility from regioregular poly(3-hexylthiophene) field-effect transistors," J Appl Phys 93 (10), 6137 (2003).
    34 F. C. Spano, "Modeling disorder in polymer aggregates: The optical spectroscopy of regioregular poly(3-hexylthiophene) thin films," J Chem Phys 122 (23) (2005); F. C. Spano, "Absorption in regio-regular poly(3-hexyl)thiophene thin films: Fermi resonances, interband coupling and disorder," Chem Phys 325 (1), 22 (2006).
    35 J. Clark, C. Silva, R. H. Friend, and F. C. Spano, "Role of intermolecular coupling in the photophysics of disordered organic semiconductors: Aggregate emission in regioregular polythiophene," Phys Rev Lett 98 (20), 206406 (2007).
    36 J. Clark, J. F. Chang, F. C. Spano, R. H. Friend, and C. Silva, "Determining exciton bandwidth and film microstructure in polythiophene films using linear absorption spectroscopy," Appl Phys Lett 94 (16), 163306 (2009).
    37 H. Z. Yu, "Different solvents effect on the performance of the solar cells based on poly(3-hexylthiophene):methanofullerenes," Synthetic Met 160 (23-24), 2505 (2010); C. W. Chu, D. Kekuda, H. S. Lin, M. C. Wu, J. S. Huang, and K. C. Ho, "The effect of solvent induced crystallinity of polymer layer on poly(3-hexylthiophene)/C(70) bilayer solar cells," Sol Energ Mat Sol C 95 (2), 419 (2011).
    38 M. Kakudo N. Kasai, X-Ray Diffraction by Macromolecules. (Kodansha Ltd. and Springer-Verlag Berlin Heidelberg, 2005).
    39 Hans Kuhn; and Horst Dieter Forsterling, Principles of Physical Chemistry. (Wiley, 2000).
    40 M. Lenes, L. J. A. Koster, V. D. Mihailetchi, and P. W. M. Blom, "Thickness dependence of the efficiency of polymer : fullerene bulk heterojunction solar cells," Appl Phys Lett 88 (24), 243502 (2006).
    41 J. Kim, M. S. Kim, and B. G. Kim, "Effective Variables To Control the Fill Factor of Organic Photovoltaic Cells," Acs Appl Mater Inter 1 (6), 1264 (2009).
    42 M. O. Reese, M. S. White, G. Rumbles, D. S. Ginley, and S. E. Shaheen, "Optimal negative electrodes for poly(3-hexylthiophene): [6,6]-phenyl C61-butyric acid methyl ester bulk heterojunction photovoltaic devices," Appl Phys Lett 92 (5), 053307 (2008).
    43 H. Jin, M. Tuomikoski, J. Hiltunen, P. Kopola, A. Maaninen, and F. Pino, "Polymer-Electrode Interfacial Effect on Photovoltaic Performances in Poly(3-hexylthiophene):Phenyl-C61-butyric Acid Methyl Ester Based Solar Cells," J Phys Chem C 113 (38), 16807 (2009).
    44 K. S. Narayan, D. Gupta, and S. Mukhopadhyay, "Fill factor in organic solar cells," Sol Energ Mat Sol C 94 (8), 1309 (2010).
    45 K. Lee, S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, and A. J. Heeger, "Bulk heterojunction solar cells with internal quantum efficiency approaching 100%," Nat Photonics 3 (5), 297 (2009).
    46 L. P. Yu, Y. Y. Liang, Y. Wu, D. Q. Feng, S. T. Tsai, H. J. Son, and G. Li, "Development of New Semiconducting Polymers for High Performance Solar Cells," J Am Chem Soc 131 (1), 56 (2009).
    47 Y. F. Li, G. J. Zhao, and Y. J. He, "6.5% Efficiency of Polymer Solar Cells Based on poly(3-hexylthiophene) and Indene-C(60) Bisadduct by Device Optimization," Adv Mater 22 (39), 4355 (2010).
    48 Y. J. Cheng, C. H. Hsieh, Y. J. He, C. S. Hsu, and Y. F. Li, "Combination of Indene-C(60) Bis-Adduct and Cross-Linked Fullerene Interlayer Leading to Highly Efficient Inverted Polymer Solar Cells," J Am Chem Soc 132 (49), 17381 (2010).
    49 V. D. Mihailetchi, H. X. Xie, B. de Boer, L. J. A. Koster, and P. W. M. Blom, "Charge transport and photocurrent generation in poly (3-hexylthiophene): Methanofullerene bulk-heterojunction solar cells," Adv Funct Mater 16 (5), 699 (2006).

    下載圖示 校內:2016-08-24公開
    校外:2016-08-24公開
    QR CODE