簡易檢索 / 詳目顯示

研究生: 吳展誥
Wu, Zhan-Gao
論文名稱: 利用結構工程改善以原子層沉積技術備製之氮化鋁鎵/氮化鎵金氧半高電子遷移率電晶體之特性
Properties of AlGaN/GaN High Electron Mobility Transistors with Atomic Layer Deposited Gate Dielectric using Structural Engineering
指導教授: 王永和
Wang, Yeong-Her
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 128
中文關鍵詞: 氮化鋁鎵/氮化鎵金氧半高電子遷移率電晶體多懸浮閘極原子層沉積二氧化鉿三氧化二鋁
外文關鍵詞: AlGaN/GaN, metal-oxide-semiconductor high-electron-mobility transistor (MOSHEMT), dual-gate floating metal, multi-floating metal, atomic layer deposition, HfO2, Al2O3
相關次數: 點閱:137下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究中我們嘗試使用電子束微影縮小線寬並備製比較了單、雙與多懸浮閘極之氮化鋁鎵/氮化鎵高電子遷移率電晶體,藉由多懸浮金屬閘極結構作為降低電晶體關閉漏電流並有效分佈更均勻之水平電場以提升原件耐壓與崩潰電壓,使之能達到同時縮小原件使吋並達到最大394伏崩潰電壓,最大電流密度與最大轉換電導值為632mA/mm和113 mS/mm。此外,我們以原子層沉積技術沉積高介電常數之三氧化二鋁與二氧化鉿薄膜,製備出多懸浮金屬閘極金氧半高電子遷移率電晶體,藉以改善元件表面特性減少表面漏電流增加最大電流密度。除此之外我們還有備製與研究不同間距之雙懸浮閘極與多懸浮閘極之金氧半高電子遷移率電晶體,其中以500奈米間距備製之雙懸浮閘極與多懸浮閘極金氧半高電子遷移率電晶體推測其擁有佳的自熱效應以及更寬廣的空乏區延伸所以有較大之崩潰電壓,但以250奈米間距之元件則有較佳的轉導。最後在金屬後退火比較後,相較於傳統結構金氧半高電子遷移率電晶體,多懸浮閘極金氧半高電子遷移率電晶體顯示出較均勻分布之電場以得到較高之崩潰電壓、較低之漏電流與較佳之閘極控制力。

    In this study, small gate length devices and dual-gate floating metal (DGFM) and multi-floating metal (MFM) AlGaN/GaN high-electron-mobility transistors (HEMTs) are fabricated. The breakdown voltage, leakage current, and transconductance of DGFM and MFM HEMTs are greatly improved since the structure of the DGFM and MFM distributed the electric field more uniformly in the horizontal direction of the devices. The maximum breakdown voltage reached 394V. The maximum drain current density and maximum transconductance were 632 mA/mm and 113 mS/mm, respectively. In order to use as a passivated surface and as an oxide layer, atomic layer deposition was utilized to deposit a high-dielectric-constant HfO2 and Al2O3 thin film, which lowered the leakage current and improved the maximum drain current density due to decreases in the surface traps and the surface leakage current path. In addition, DGFM and MFM MOSHEMTs with different spacers were also made and discussed. Compared with 250nm spacer devices, the DGFM and MFM MOSHEMTs with a 500nm spacer had a better self-heating effect and wider depletion extension that resulted in a higher breakdown. Finally, compared with the traditional AlGaN/GaN MOSHEMTs, the DGFM and MFM MOSHEMTs exhibited less drain leakage current and better gate controllability and significantly improved breakdown voltage after post metal annealing (PMA).

    中文摘要 I Abstract III 誌 謝 V CONTENTS VII FIGURE CAPTIONS IX TABLE CAPTIONS XIII Chapter 1 Introduction 1 1.1 Background 1 1.2 Motivation 4 1.3 Organization 7 Chapter 2 Principle of AlGaN/GaN HEMTs 8 2.1 Lattice Structure 8 2.2 Substrate material 11 2.3 Polarization effect of AlGaN/GaN Heterostructure 13 2.3.1 Spontaneous Polarization 13 2.3.2 Piezoelectric Polarization 16 2.2.4 Forming of two-dimensional electron gas 19 Chapter 3 Experiments and Device Fabrication 23 3.1 Experimental Equipment 23 3.1.1 Electron Beam Evaporator 23 3.1.2 Rapid Thermal Annealing System 24 3.1.3 Spin Coater 24 3.1.4 Mask Aligner 25 3.1.5 ICP Etching System 25 3.1.6 Atomic Layer Deposition 26 3.1.7 Electron beam lithography system 26 3.2 Fabrication Process 32 3.2.1 Preparation 32 3.2.2 Mesa Isolation 33 3.2.3 Source and Drain Ohmic Contact 34 3.2.4 Deposition of the Gate Dielectric Layer 35 3.2.5 Gate Pattern Definition 36 3.2.6 Schottky Gate Contact 37 Chapter 4 Results and Discussion 43 4.1 Physical Properties of ALD HfO2 and Al2O3 thin film 43 4.1.1Transmission Electron Microscopy 43 4.1.2 Energy-dispersive X-ray spectroscopy mapping measurement 45 4.2 Comparison of Al2O3 MOSHEMTs Based on Different Structures (MFM, DGDM, and Conventional) 47 4.2.1 Saturation drain current 47 4.2.2 Transfer Characteristics and Transconductance 51 4.2.3 Gate leakage current 54 4.2.4 Subthreshold Swing 55 4.2.5 Off-State Breakdown Voltage 57 4.3 Comparison of HfO2 MOSHEMTs Based on Different Structures (MFM, DGDM and Conventional) 59 4.3.1 Physical Properties 59 4.3.2 Saturation drain current 61 4.3.3 Transfer Characteristics and Transconductance 65 4.3.4 Subthreshold Swing 68 4.3.5 Transfer Characteristics Double Sweep Measurement 70 4.3.6 Gate Leakage Current 74 4.3.7 C-V Characteristics 77 4.3.8 Off-State Breakdown Voltage 79 4.3.9 Cutoff Frequency and Maximum Oscillation Frequency 81 4.3.10 Power-added efficiency & saturated output power 85 4.3.11 Flicker Noise 86 4.4 Investigation of Improvements in Breakdown Voltage for the Different Structures (MFM, DGDM and Conventional) 88 4.4.1 Proof of the depletion extension 88 4.4.2 Investigation of the electric field distribution 90 4.5 Comparison of Different Spacers on Different Structures (MFM and DGDM) 95 4.5.1 Physical Properties 95 4.5.2 Saturation drain current 97 4.5.3 Transfer Characteristics and Transconductance 99 4.5.4 Subthreshold Swing 101 4.5.5 Gate Leakage Current 103 4.5.6 C-V Characteristics 105 4.5.7 Off-State Breakdown Voltage 107 4.5.8 Cutoff Frequency and Maximum Oscillation Frequency 109 4.5.9 Power-added efficiency & saturated output power 111 4.5.10 Flicker Noise 113 Chapter 5 Conclusion 115 Chapter 6 Future Work 118 References 119

    [1] Y. F. Wu, D. Kapolnek, J. P. Ibbetson, P. Parikh, B. P. Keller, and U. K. Mishra, “Very-High Power Density AlGaN/GaN HEMTs,” IEEE Transactions on Electronic Devices, vol. 48, no. 3, pp.586-590, Mar. 2001.
    [2] J. W. Chung, W. E. Hoke, E. M. Chumbes, and T. Palacios, “AlGaN/GaN HEMT With 300-GHz fmax,” IEEE Electron Device Letters, vol. 31, no. 3, pp.195-197, Mar. 2010.
    [3] W. Saito, Y. Takada, M. Kuraguchi, K. Tsuda, I. Omura, T. Ogura, and H. Ohashi, “High Breakdown Voltage AlGaN/GaN Power-HEMT Design and High Current Density Switching Behavior,” IEEE Transactions on Electron Devices, vol. 50, no. 12,pp.2528-2531, Dec. 2003.
    [4] Semiconductor Today Website, [Online]. Available: http://www.semiconductortoday.com/features/PDF/SemiconductorToday_MayJune2014-GaN-to-grow.pdf.
    [5] F. Medjdoub, M. Zegaoui, D. Ducatteau, N. Rolland, and P. A. Rolland, “High-Performance Low-Leakage-Current AlN/GaN HEMTs Grown on Silicon Substrate,” IEEE Electron Device Letters, vol. 32, no. 7, pp.874-876, Jul. 2011.
    [6] C. Ostermaier, G. Pozzovivo, J.F. Carlin, B. Basnar, W. Schrenk, Y. Douvry, C. Gaquière, J. C. DeJaeger, K. Čičo, K. Fröhlich, M. Gonschorek, N. Grandjean, G. Strasser, D. Pogany, and J. Kuzmik, “Ultrathin InAlN/AlN Barrier HEMT With High Performance in Normally Off Operation,” IEEE Electron Device Letters, vol. 30, no. 10,pp.1030-1032, Oct. 2009.
    [7] R. Wang1, G. Li, G. Karbasian, J. Guo, F. Faria, Z. Hu,Y. Yue, J. Verma, O. Laboutin, Y. Cao, W. Johnson, G. Snider, P. Fay, D. Jena, and H. (Grace) Xing, “InGaN Channel High-Electron-Mobility Transistors with InAlGaN Barrier and fT/fmax of 260/220 GHz,” Appl. Phys. Exp, vol. 6, pp.016503, 2013.
    [8] Y. Cai, Y. Zhou, K. J. Chen, and K. M. Lau, “High-Performance Enhancement-Mode AlGaN/GaN HEMTs Using Fluoride-Based Plasma Treatment,” IEEE Electron Device Letters, vol. 26, no. 7, pp.435 - 437 , Jul. 2005.
    [9] Y. Dora, A. Chakraborty, L. McCarthy, S. Keller, S. P. DenBaars, and U. K. Mishra, “High breakdown voltage achieved on AlGaN/GaN HEMTs with integrated slant field plates,” IEEE Electron Device Lett., vol. 27, no. 9, pp. 713-715, Sep. 2006.
    [10] V. Joshi, B. Shankar, S. P. Tiwari and M. Shrivastava, “Dependence of Avalanche Breakdown on Surface & Buffer Traps in AlGaN/GaN HEMTs,” Appl. Phys, vol. 7-1, pp.109-112, 2017.
    [11] S. Makino, S. Ohi, J. T. Asubar, H. Tokuda, and M. Kuzuhara, “Effect of Metal Electrode Edge Irregularities on Breakdown Voltages of AlGaN/GaN HEMTs,” IEEE International Meeting for Future of Electron Devices, Kansai, Dol.10.1109/IMFEDK.2016.7521698, July 2016.
    [12] S. L. Selvaraj, T. Suzue, and T. Egawa, “Breakdown Enhancement of AlGaN/GaN HEMTs on 4-in Silicon by Improving the GaN Quality on Thick Buffer Layers,” IEEE Electron Device Lett., vol. 30, no. 6, pp. 587-589, Sun. 2009.
    [13] M. Wang and K. J. Chen, “Improvement of the Off-State Breakdown Voltage With Fluorine Ion Implantation in AlGaN/GaN HEMTs,” IEEE Transactions on Electron Devices, Vol. 58, no. 2, pp. 460-464, Feb 2011.
    [14] K. H. Cho, Y. H. Choi, J. Lim, and M. K. Han, “Increase of Breakdown Voltage on AlGaN/GaN HEMTs by Employing Proton Implantation,” IEEE transactions on Electron Devices, Vol. 56, no. 3,pp.365-368, Mar. 2009.
    [15] D. Song, J. Liu, Z. Cheng, W. C. W. Tang, K. M. Lau , and K. J. Chen, “Normally Off AlGaN/GaN Low-Density Drain HEMT (LDD-HEMT) With Enhanced Breakdown Voltage and Reduced Current Collapse,” IEEE Electron Device Lett., vol. 28, no. 3, pp.189-191, Mar. 2007.
    [16] S. Arulkumaran, G. I. Ng, and S. Vicknesh, “Enhanced Breakdown Voltage With High Johnson’s Figure-of-Merit in 0.3-μm T-gate AlGaN/GaN HEMTs on Silicon by (NH4)2Sx Treatment,” IEEE Electron Device Lett., vol. 34, no. 11, pp.1364 - 1366, Nov 2013.
    [17] A. Sleiman, A. D. Carlo, and P. Lugli, “Breakdown dynamics and RF-breakdown in InP-based HEMTs,” IEEE Xplore, 07, Dol : 10.1109/ICIPRM.2002.1014299, p.p181-184, Aug. 2002.
    [18] B. Lu, and T. Palacios, “High Breakdown (> 1500 V) AlGaN/GaN HEMTs by Substrate-Transfer Technology,” IEEE Electron Device Lett., vol. 31, no. 9, pp.951-953, Sep 2010.
    [19] J. Ma and E. Matioli, “Slanted Tri-Gates for High-Voltage GaN Power Devices,” IEEE Electron Device Lett., vol. 38, no. 9, pp.1305-1308, Sep 2017.
    [20] H. Onodera and K. Horio, “Physics-Based Simulation of Field-Plate Effects on Breakdown Characteristics in AlGaN/GaN HEMTs,” Proceedings of the 7th European Microwave Integrated Circuits Conference, pp.401- 404, Oct. 2012.
    [21] N. Q. Zhang, S. Keller, G. Parish, S. Heikman, S. P. DenBaars, and U. K. Mishra, “High Breakdown GaN HEMT with Overlapping Gate Structure,” IEEE Electron Device Lett., vol. 21, no. 9, pp.421-423, Sep 2000.
    [22] Y. Dora, A. Chakraborty, L. McCarthy, S. Keller, S. P. DenBaars, and U. K. Mishra, “High Breakdown Voltage Achieved on AlGaN/GaN HEMTs With Integrated Slant Field Plates,” IEEE Electron Device Lett., vol. 27, no. 9, pp.713-715, Sep 2006.
    [23] S. Basu, P. K. Singh, P. W. Sze and Y. H. Wang, “AlGaN/GaN Metal-oxide-semiconductor high electron mobility transistor with liquid phase deposited Al2O3 as gate dielectric,” J. Electrochem. Soc., vol. 157 no. 10, pp. 947-951, 2010.
    [24] C. C. Hu, C. A. Chiu, J. X. Xu, T. Y. Wu, P. W. Sze, and Y. H. Wang, “Liquid-phase-deposited high dielectric zirconium oxide for metal-oxide-semiconductor high electron mobility transistors,” Vacuum, vol. 118, pp. 142-146, Aug. 2015.
    [25] T. Y. Wu, S. K. Lin, P. W. Sze, J. J. Huang, W. C. Chien, C. C. Hu, M. J. Tsai, and Y. H. Wang AlGaN/GaN MOSHEMTs with Liquid-Phase Deposited TiO2 as Gate Dielectric,” IEEE Trans. on Electronic Devices, vol.56, no.12, pp. 2911-2916, Dec. 2009.
    [26] Adivarahan, J. Yang, A. Koudymov, G. Simin, and M. A. Khan, “Stable CW operation of field-plated GaN-AlGaN MOSHFETs at 19 W/mm,” IEEE Electron Device Lett., vol. 26, no. 8, pp. 535-537, Aug. 2005.
    [27] K. Lee, W. Jang, H. Kim, H. Lim, B. Kim, H. Seo, and H. Jeon, “Leakage current suppression in spatially controlled Si-doped ZrO2 for capacitors using atomic layer deposition,” Thin Solid Films, vol. 657, pp. 1-7, Apr. 2018.
    [28] R. L. Puurunen, “Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process,” J. Appl. Phys., vol. 97, p. 121301, Jun. 2005.
    [29] Y. Yue, Y. Hao, J. Zhang, J. Ni, W. Mao, Q. Feng, and L. Liu, “AlGaN/GaN MOS-HEMT with HfO2 Dielectric and Al2O3 interfacial passivation layer grown by atomic layer deposition,” IEEE Electron Device Lett., vol. 29, no. 8, pp. 838–840, Aug. 2008.
    [30] M. Frentrup et al, “X-ray diffraction analysis of cubic zincblende III-nitrides,” J. Phys. D: Appl. Phys, 50 433002, 2017.
    [31] K. Stacia et al., “Recent progress in metal-organic chemical vapor deposition of ( 0001) N-polar group-III nitrides,” Semiconductor Science and Technology, vol. 29, no. 11, p. 113001, 2014.
    [32] Y.Y. Wong, Y.S. Chiu, T.T. Luong, T.M. Lin, Y.T. Ho, Y.C. Lin, and E. Y. Chang, “Growth and Fabrication of AlGaN/GaN HEMT on SiC Substrate,” 10th IEEE International Conference on Semiconductor Electronics, Dol : 10.1109/SMElec.2012.6417246, pp. 729-732, Sep. 2012.
    [33] T. Mizutani, M. Ito, S. Kishimoto, and F. Nakamura, “AlGaN/GaN HEMTs With Thin InGaN Cap Layer for Normally Off Operation,” IEEE Electron Device Lett, vol. 28, no. 7, pp. 549-551, Jul. 2007.
    [34] M. Pan, X. Gao, D. Gorka, M. Oliver, and S. Guo, “Development of AlGaN/GaN HEMTs on Different Substrates,” CS MANTECH Conference, Apr. 2012.
    [35] S. Nakamura, “GaN Growth Using GaN Buffer Layer,” Japanese Journal of Appl. Phys, Vol. 30, No. 10A, pp. L1705-L1707, Oct. 1991.
    [36] K. Hirama, H. Takayanagi, S. Yamauchi, J. H. Yang, H. Kawarada, and H. Umezawa, “Spontaneous polarization model for surface orientation dependence of diamond hole accumulation layer and its transistor performance,” Appl. Phys. Lett., no. 92, Doi: 10.1063/1.2889947, pp. 112107-1–112107-3, Mar. 2008.
    [37] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, and J. Hilsenbeck, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,” J. Appl. Phys., vol. 85, no. 6, pp. 3222-3233, Mar. 1999.
    [38] N. Karumuri ; T. Sreenidhi ; N. DasGupta ; A. DasGupta, “An analytical charge control model for AlGaN/GaN HEMT including the gate bias dependence on polarization charge ,” IEEE Xplore. 2012 International Conference on Emerging Electronics, Doi: 10.1109/ICEmElec.2012.6636230, Oct. 2013.
    [39] L. Semra, A. Telia, M. Kaddeche, A. Soltani, “Effects of spontaneous and piezoelectric polarization on AlInN/GaN heterostructure,” IEEE Conferences. 2012 International Conference on Engineering and Technology, pp.1-4, 2012.
    [40] H. Ye, “Electrical Characterization of GaN:Si and AlGaN:Si,” Sweden. 2011.
    [41] X. G. He, D. G. Zhao, and D. S. Jiang, “Formation of two-dimensional electron gas at AlGaN/GaN heterostructure and the derivation of its sheet density expression,” Chin. Phys. B vol. 24, no. 6, p. 067301, Apr. 2015.
    [42] P. M. Asbeck, E.T. Yu, S.S. Lau, G.J. Sullivan, J. V. Hove and J. Redwing, “Piezoelectric charge densities in AIGaN/GaN HFETs,” IEEE Electronics Letters 3rd, Vol. 33, No. 14, PP.1230-1231, Jul. 1997.
    [43] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, and J. Hilsenbeck, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,” J. Appl. Phys., vol. 85, no. 6, pp. 3222-3233, Mar. 1999.
    [44] O. Ambacher, B. Foutz, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, A. J. Sierakowski, W. J. Schaff, and L. F. Eastman, “Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures,” J. Appl. Phys., vol. 87, no. 1, pp. 334-344, Jan. 2000.
    [45] C. H. WU, P. C. HAN, Q. H. LUC, C. Y. HSU, T. E. HSIEH, H. C. WANG , Y. K. LIN, P. C. CHANG, Y. C. LIN, AND E. Y. CHANG, “Normally-OFF GaN MIS-HEMT With F− Doped Gate Insulator Using Standard Ion Implantation,” IEEE Journal of Electron Devices Society, Volume. 6, pp893-899, 2018.
    [46] A. F. Palmstrom, P. K. Santra and S. F. Bent, “Atomic layer deposition in nanostructured photovoltaics: tuning optical, electronic and surface properties,” Royal Society of Chemistry. Nanoscale, Doi: 10.1039/C5NR02080H, vol.7, pp. 12266-12283, Jun. 2015.
    [47] Y. Ohno, T. Nakao, S. Kishimoto, K. Maezawa, and T. Mizutani, “Effects of surface passivation on breakdown of AlGaN/GaN high-electron-mobility transistors,” J. Appl. Phys., vol. 84, no. 12, pp. 2184-2185, Mar. 2004.
    [48] Y. Wang, M. Wang, B. Xie, C. P. Wen, J. Wang, Y. Hao, W. Wu, K. J. Chen, and B. Shen, “High-Performance Normally-Off Al2O3/GaN MOSFET Using a Wet Etching-Based Gate Recess Technique,” IEEE Electron Device Lett., vol. 34, no. 11, pp. 1370-1372, Nov. 2013.
    [49] Y. He, M. Mi, C. Wang, X. Zheng, M. Zhang, H. Zhang, J. Wu, L. Yang, P.Zhang, X. Ma, and Y. Hao, “Enhancement-Mode AlGaN/GaN Nanowire Channel High Electron Mobility Transistor With Fluorine Plasma Treatment by ICP,” IEEE Electron Device Lett., vol. 38, no. 10, pp. 1421-1424, Oct. 2017.
    [50] J. W. Chung, W. E. Hoke, E. M. Chumbes, and T. Palacios “AlGaN/GaN HEMT With 300-GHz fmax,” IEEE Electron Device Lett., vol. 31, no. 3, pp. 195-197, Mar. 2010. [51]Z. X. Wei1, J. k. Jin, W. Y. Ang, F. Z. Hong, Z. Z. Ping, “ AlNGaN HEMT T- gate Optimal Design,” Atlantis Press, Paris, France, pp.0845-0847, 2013.
    [51] Z. X. Wei1, J. k. Jin, W. Y. Ang, F. Z. Hong, Z. Z. Ping, “ AlNGaN HEMT T- gate Optimal Design,”Atlantis Press, Paris, France, pp.0845-0847, 2013.
    [52] J. H. Lee, J. M. Ju, G. Atmaca , J. G. Kim, S. H. Kang,Y. S. Lee, S. H. Lee, J. W. Lim, H. S. Kwon, S. B. Lisesivdin, AND J. H. Lee, “High Figure-of-Merit (V2BR/RON) AlGaN/GaN Power HEMT With Periodically C-Doped GaN Buffer and AlGaN Back Barrier,” IEEE Electron Device Society., vol. 6, pp.1179-1186, 2018.
    [53] T. Kabemura, S. Ueda, Y. Kawada, and K. Horio, “Enhancement of Breakdown Voltage in AlGaN/GaN HEMTs: Field Plate Plus High-k Passivation Layer and High Acceptor Density in Buffer Layer,” IEEE Transactions on Electron Device Lett., vol. 65, no. 9, pp. 3848-3854, Sep. 2018.
    [54] C. Yang , X. Luo , A. Zhang , S. Deng, D. Ouyang, F. Peng, J. Wei, B. Zhang, and Z. Li, “AlGaN/GaN MIS-HEMT With AlN Interface Protection Layer and Trench
    Termination Structure,” IEEE Transactions on Electron Device Lett., vol. 65, no. 11, pp. 5203-5207, Nov. 2018.
    [55] Jun Ma and Elison Matioli, “Slanted Tri-Gates for High-Voltage GaN Power Devices,” IEEE Electron Device Lett, vol. 38, no. 9, pp. 1305-1308, Sep 2017.
    [56] G. Xie, E. Xu, J. Lee, N. Hashemi, B. Zhang, F. Y. Fu, and W. T. Ng, “Breakdown-Voltage-Enhancement Technique for RF-Based AlGaN/GaN HEMTs With a Source-Connected Air-Bridge Field Plate,” IEEE Electron Device Lett., vol. 33, no. 5, pp. 670-672, May. 2012.

    下載圖示 校內:2019-09-01公開
    校外:2024-12-31公開
    QR CODE